1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
|
test_keywrap.doctest - test keywrap functions
Copyright (C) 2014-2017 Arthur de Jong
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA
>>> import struct
>>> from binascii import a2b_hex
>>> from pskc.crypto.aeskw import wrap, unwrap
Wrap 128 bits of Key Data with a 128-bit KEK (test vector 4.1 from RFC 3394).
>>> key = a2b_hex('000102030405060708090A0B0C0D0E0F')
>>> plaintext = a2b_hex('00112233445566778899AABBCCDDEEFF')
>>> ciphertext = a2b_hex('1FA68B0A8112B447AEF34BD8FB5A7B829D3E862371D2CFE5')
>>> wrap(plaintext, key) == ciphertext
True
>>> unwrap(ciphertext, key) == plaintext
True
Wrap 128 bits of Key Data with a 192-bit KEK (test vector 4.2 from RFC 3394).
>>> key = a2b_hex('000102030405060708090A0B0C0D0E0F1011121314151617')
>>> plaintext = a2b_hex('00112233445566778899AABBCCDDEEFF')
>>> ciphertext = a2b_hex('96778B25AE6CA435F92B5B97C050AED2468AB8A17AD84E5D')
>>> wrap(plaintext, key) == ciphertext
True
>>> unwrap(ciphertext, key) == plaintext
True
Wrap 128 bits of Key Data with a 256-bit KEK (test vector 4.3 from RFC 3394).
>>> key = a2b_hex('000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F')
>>> plaintext = a2b_hex('00112233445566778899AABBCCDDEEFF')
>>> ciphertext = a2b_hex('64E8C3F9CE0F5BA263E9777905818A2A93C8191E7D6E8AE7')
>>> wrap(plaintext, key) == ciphertext
True
>>> unwrap(ciphertext, key) == plaintext
True
Wrap 192 bits of Key Data with a 192-bit KEK (test vector 4.4 from RFC 3394).
>>> key = a2b_hex('000102030405060708090A0B0C0D0E0F1011121314151617')
>>> plaintext = a2b_hex('00112233445566778899AABBCCDDEEFF0001020304050607')
>>> ciphertext = a2b_hex('031D33264E15D33268F24EC260743EDCE1C6C7DDEE725A936BA814915C6762D2')
>>> wrap(plaintext, key) == ciphertext
True
>>> unwrap(ciphertext, key) == plaintext
True
Wrap 192 bits of Key Data with a 256-bit KEK (test vector 4.5 from RFC 3394).
>>> key = a2b_hex('000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F')
>>> plaintext = a2b_hex('00112233445566778899AABBCCDDEEFF0001020304050607')
>>> ciphertext = a2b_hex('A8F9BC1612C68B3FF6E6F4FBE30E71E4769C8B80A32CB8958CD5D17D6B254DA1')
>>> wrap(plaintext, key) == ciphertext
True
>>> unwrap(ciphertext, key) == plaintext
True
Wrap 256 bits of Key Data with a 256-bit KEK (test vector 4.6 from RFC 3394).
>>> key = a2b_hex('000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F')
>>> plaintext = a2b_hex('00112233445566778899AABBCCDDEEFF000102030405060708090A0B0C0D0E0F')
>>> ciphertext = a2b_hex('28C9F404C4B810F4CBCCB35CFB87F8263F5786E2D80ED326CBC7F0E71A99F43BFB988B9B7A02DD21')
>>> wrap(plaintext, key) == ciphertext
True
>>> unwrap(ciphertext, key) == plaintext
True
Mangling the ciphertext and unwrapping results in an exception:
>>> unwrap(b'XX' + ciphertext[2:], key) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
DecryptionError: IV does not match
>>> unwrap(ciphertext[:-2] + b'XX', key) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
DecryptionError: IV does not match
>>> unwrap(ciphertext[2:], key) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
DecryptionError: Ciphertext length wrong
Wrap 20 octets with a 192-bit key (first example from section 6 of RFC 5649).
>>> key = a2b_hex('5840df6e29b02af1ab493b705bf16ea1ae8338f4dcc176a8')
>>> plaintext = a2b_hex('c37b7e6492584340bed12207808941155068f738')
>>> ciphertext = a2b_hex('138bdeaa9b8fa7fc61f97742e72248ee5ae6ae5360d1ae6a5f54f373fa543b6a')
>>> wrap(plaintext, key) == ciphertext
True
>>> unwrap(ciphertext, key) == plaintext
True
>>> wrap(plaintext, key, pad=False) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
EncryptionError: Plaintext length wrong
>>> unwrap(ciphertext, key, pad=False) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
DecryptionError: IV does not match
Wrap 7 octets with a 192-bit key (second example from section 6 of RFC 5649).
>>> key = a2b_hex('5840df6e29b02af1ab493b705bf16ea1ae8338f4dcc176a8')
>>> plaintext = a2b_hex('466f7250617369')
>>> ciphertext = a2b_hex('afbeb0f07dfbf5419200f2ccb50bb24f')
>>> wrap(plaintext, key) == ciphertext
True
>>> unwrap(ciphertext, key) == plaintext
True
>>> wrap(plaintext, key, pad=False) # disable padding
Traceback (most recent call last):
...
EncryptionError: Plaintext length wrong
>>> unwrap(ciphertext, key, pad=False)
Traceback (most recent call last):
...
DecryptionError: Ciphertext length wrong
Normally padding is only done if needed but it can be forced.
>>> key = a2b_hex('000102030405060708090A0B0C0D0E0F')
>>> plaintext = a2b_hex('00112233445566778899AABBCCDDEEFF')
>>> ciphertext = a2b_hex('1FA68B0A8112B447AEF34BD8FB5A7B829D3E862371D2CFE5')
>>> wrap(plaintext, key) == ciphertext
True
>>> unwrap(ciphertext, key) == plaintext
True
>>> ciphertext = a2b_hex('2cef0c9e30de26016c230cb78bc60d51b1fe083ba0c79cd5')
>>> wrap(plaintext, key, pad=True) == ciphertext
True
>>> unwrap(ciphertext, key) == plaintext
True
>>> unwrap(ciphertext, key, pad=False) # disabling padding fails IV check
Traceback (most recent call last):
...
DecryptionError: IV does not match
Padding can also be disabled. This also disables the shortcut for small
plaintexts as described in RFC 5649.
>>> key = a2b_hex('000102030405060708090A0B0C0D0E0F')
>>> plaintext = a2b_hex('0011223344556677')
>>> ciphertext = a2b_hex('f4740052e82a225174ce86fbd7b805e7')
>>> wrap(plaintext, key) == ciphertext
True
>>> unwrap(ciphertext, key) == plaintext
True
>>> wrap(plaintext, key, pad=False) # disable padding
Traceback (most recent call last):
...
EncryptionError: Plaintext length wrong
>>> unwrap(ciphertext, key, pad=False)
Traceback (most recent call last):
...
DecryptionError: Ciphertext length wrong
Lastly, an explicit IV can be set but this disables the padding functionality.
>>> key = a2b_hex('000102030405060708090A0B0C0D0E0F')
>>> plaintext = a2b_hex('0011223344556677')
>>> iv = a2b_hex('1010101010101010')
>>> wrap(plaintext, key, iv)
Traceback (most recent call last):
...
EncryptionError: Plaintext length wrong
>>> plaintext = a2b_hex('00112233445566778899AABBCCDDEEFF')
>>> ciphertext = a2b_hex('4cd926c570e19c35ace71d59a1062dae850e6a709066e0bf')
>>> wrap(plaintext, key, iv) == ciphertext
True
>>> unwrap(ciphertext, key, iv) == plaintext
True
>>> unwrap(ciphertext, key, a2b_hex('2020202020202020')) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
DecryptionError: IV does not match
We can fake padding by specifying an RFC 5649 IV ourselves. The length of 14
works because we have padded the plaintext with two 0 bytes.
>>> key = a2b_hex('5840df6e29b02af1ab493b705bf16ea1ae8338f4dcc176a8')
>>> plaintext = a2b_hex('c37b7e6492584340bed1220765460000')
>>> iv = a2b_hex('a65959a6') + struct.pack('>I', 14)
>>> ciphertext = wrap(plaintext, key, iv=iv)
>>> unwrap(ciphertext, key, iv=iv) == plaintext
True
>>> unwrap(ciphertext, key) == plaintext[:14]
True
If we mangle the IV to look like an RFC 5649 value but with an invalid
padding length we should get an exception.
>>> iv = a2b_hex('a65959a6') + struct.pack('>I', 12)
>>> ciphertext = wrap(plaintext, key, iv=iv)
>>> unwrap(ciphertext, key, iv=iv) == plaintext
True
>>> unwrap(ciphertext, key) == plaintext[:12]
Traceback (most recent call last):
...
DecryptionError: IV does not match
|