1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
|
# key.py - module for handling keys from pskc files
# coding: utf-8
#
# Copyright (C) 2014-2016 Arthur de Jong
#
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2.1 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with this library; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
# 02110-1301 USA
"""Module that handles keys stored in PSKC files."""
import array
import base64
import binascii
from pskc.policy import Policy
class DataType(object):
"""Provide access to possibly encrypted, MAC'ed information.
This class is meant to be subclassed to provide typed access to stored
values. Instances of this class provide the following attributes:
value: unencrypted value
cipher_value: encrypted value
algorithm: encryption algorithm of encrypted value
value_mac: MAC of the encrypted value
"""
def __init__(self, key):
self.pskc = key.pskc
self.value = None
self.cipher_value = None
self.algorithm = None
self.value_mac = None
def parse(self, element):
"""Read information from the provided element.
The element is expected to contain <PlainValue>, <EncryptedValue>
and/or <ValueMAC> elements that contain information on the actual
value."""
from pskc.xml import find, findtext, findbin
if element is None:
return
# read plaintext value from <PlainValue>
plain_value = findtext(element, 'PlainValue')
if plain_value is not None:
self.value = self._from_text(plain_value)
# read encrypted data from <EncryptedValue>
encrypted_value = find(element, 'EncryptedValue')
if encrypted_value is not None:
self.cipher_value = findbin(
encrypted_value, 'CipherData/CipherValue')
encryption_method = find(encrypted_value, 'EncryptionMethod')
if encryption_method is not None:
self.algorithm = encryption_method.attrib.get('Algorithm')
# store the found algorithm in the pskc.encryption property
if not self.pskc.encryption.algorithm and self.algorithm:
self.pskc.encryption.algorithm = self.algorithm
# read MAC information from <ValueMAC>
value_mac = findbin(element, 'ValueMAC')
if value_mac is not None:
self.value_mac = value_mac
@staticmethod
def _from_text(value):
"""Convert the plain value to native representation."""
raise NotImplementedError # pragma: no cover
@staticmethod
def _from_bin(value):
"""Convert the unencrypted binary to native representation."""
raise NotImplementedError # pragma: no cover
@staticmethod
def _to_text(value):
"""Convert the value to an unencrypted string representation."""
raise NotImplementedError # pragma: no cover
def make_xml(self, key, tag, field):
from pskc.xml import find, mk_elem
# skip empty values
if self.value in (None, '') and not self.cipher_value:
return
# find the data tag and create our tag under it
data = find(key, 'pskc:Data')
if data is None:
data = mk_elem(key, 'pskc:Data', empty=True)
element = mk_elem(data, tag, empty=True)
# see if we should encrypt
if field in self.pskc.encryption.fields and not self.cipher_value:
self.cipher_value = self.pskc.encryption.encrypt_value(
self._to_bin(self.value))
self.algorithm = self.pskc.encryption.algorithm
self.value = None
# write out value
if self.cipher_value:
encrypted_value = mk_elem(
element, 'pskc:EncryptedValue', empty=True)
mk_elem(
encrypted_value, 'xenc:EncryptionMethod',
Algorithm=self.algorithm)
cipher_data = mk_elem(
encrypted_value, 'xenc:CipherData', empty=True)
mk_elem(
cipher_data, 'xenc:CipherValue',
base64.b64encode(self.cipher_value).decode())
if self.value_mac:
mk_elem(element, 'pskc:ValueMAC', base64.b64encode(
self.value_mac).decode())
elif self.pskc.mac.algorithm:
mk_elem(element, 'pskc:ValueMAC', base64.b64encode(
self.pskc.mac.generate_mac(self.cipher_value)
).decode())
else:
mk_elem(element, 'pskc:PlainValue', self._to_text(self.value))
def get_value(self):
"""Provide the attribute value, decrypting as needed."""
if self.value is not None:
return self.value
if self.cipher_value:
# check MAC and decrypt
self.check()
return self._from_bin(self.pskc.encryption.decrypt_value(
self.cipher_value, self.algorithm))
def set_value(self, value):
"""Set the unencrypted value."""
self.value = value
self.cipher_value = None
self.algorithm = None
self.value_mac = None
def check(self):
"""Check whether the embedded MAC is correct."""
# this checks the encrypted value
if self.cipher_value and self.value_mac:
return self.pskc.mac.check_value(
self.cipher_value, self.value_mac)
class BinaryDataType(DataType):
"""Subclass of DataType for binary data (e.g. keys)."""
@staticmethod
def _from_text(value):
"""Convert the plain value to native representation."""
return base64.b64decode(value)
@staticmethod
def _from_bin(value):
"""Convert the unencrypted binary to native representation."""
return value
@staticmethod
def _to_text(value):
"""Convert the value to an unencrypted string representation."""
# force conversion to bytestring on Python 3
if not isinstance(value, type(b'')):
value = value.encode() # pragma: no cover (Python 3 specific)
return base64.b64encode(value).decode()
@staticmethod
def _to_bin(value):
"""Convert the value to binary representation for encryption."""
# force conversion to bytestring on Python 3
if not isinstance(value, type(b'')):
value = value.encode() # pragma: no cover (Python 3 specific)
return value
class IntegerDataType(DataType):
"""Subclass of DataType for integer types (e.g. counters)."""
@staticmethod
def _from_text(value):
"""Convert the plain value to native representation."""
# try normal integer string parsing
try:
return int(value)
except ValueError:
pass
# fall back to base64 decoding
return IntegerDataType._from_bin(base64.b64decode(value))
@staticmethod
def _from_bin(value):
"""Convert the unencrypted binary to native representation."""
# try to handle value as ASCII representation
if value.isdigit():
return int(value)
# fall back to do big-endian decoding
result = 0
for x in array.array('B', value):
result = (result << 8) + x
return result
@staticmethod
def _to_text(value):
"""Convert the value to an unencrypted string representation."""
return str(value)
@staticmethod
def _to_bin(value):
"""Convert the value to binary representation for encryption."""
value = '%x' % value
n = len(value)
return binascii.unhexlify(value.zfill(n + (n & 1)))
class Key(object):
"""Representation of a single key from a PSKC file.
Instances of this class provide the following properties:
id: unique key identifier (should be constant between interchanges)
algorithm: identifier of the PSKC algorithm profile (URI)
secret: the secret key itself (binary form, automatically decrypted)
counter: event counter for event-based OTP
time_offset: time offset for time-based OTP algorithms (in intervals)
time_interval: time interval for time-based OTP in seconds
time_drift: device clock drift (negative means device is slow)
issuer: party that issued the key
key_profile: reference to pre-shared key profile information
key_reference: reference to an external key
friendly_name: human-readable name for the secret key
key_userid: user distinguished name associated with the key
manufacturer: name of the organisation that made the device
serial: serial number of the device
model: device model description
issue_no: issue number per serial number
device_binding: device (class) identifier for the key to be loaded upon
start_date: key should not be used before this date
expiry_date: key or device may expire after this date
device_userid: user distinguished name associated with the device
crypto_module: id of module to which keys are provisioned within device
algorithm_suite: additional algorithm characteristics (e.g. used hash)
challenge_encoding: format of the challenge for CR devices
challenge_min_length: minimum accepted challenge length by device
challenge_max_length: maximum size challenge accepted by the device
challenge_check: whether the device will check an embedded check digit
response_encoding: format of the response the device will generate
response_length: the length of the response of the device
response_check: whether the device appends a Luhn check digit
policy: reference to policy information (see Policy class)
"""
def __init__(self, pskc):
self.pskc = pskc
self.id = None
self.algorithm = None
self._secret = BinaryDataType(self)
self._counter = IntegerDataType(self)
self._time_offset = IntegerDataType(self)
self._time_interval = IntegerDataType(self)
self._time_drift = IntegerDataType(self)
self.issuer = None
self.key_profile = None
self.key_reference = None
self.friendly_name = None
self.key_userid = None
self.manufacturer = None
self.serial = None
self.model = None
self.issue_no = None
self.device_binding = None
self.start_date = None
self.expiry_date = None
self.device_userid = None
self.crypto_module = None
self.algorithm_suite = None
self.challenge_encoding = None
self.challenge_min_length = None
self.challenge_max_length = None
self.challenge_check = None
self.response_encoding = None
self.response_length = None
self.response_check = None
self.policy = Policy(self)
def parse(self, key_package):
"""Read key information from the provided <KeyPackage> tree."""
from pskc.xml import find, findtext, findtime, getint, getbool
key = find(key_package, 'Key')
if key is not None:
self.id = key.get('Id')
self.algorithm = key.get('Algorithm')
data = find(key_package, 'Key/Data')
if data is not None:
self._secret.parse(find(data, 'Secret'))
self._counter.parse(find(data, 'Counter'))
self._time_offset.parse(find(data, 'Time'))
self._time_interval.parse(find(data, 'TimeInterval'))
self._time_drift.parse(find(data, 'TimeDrift'))
self.issuer = findtext(key_package, 'Key/Issuer')
self.key_profile = findtext(key_package, 'Key/KeyProfileId')
self.key_reference = findtext(key_package, 'Key/KeyReference')
self.friendly_name = findtext(key_package, 'Key/FriendlyName')
# TODO: support multi-language values of <FriendlyName>
self.key_userid = findtext(key_package, 'Key/UserId')
self.manufacturer = findtext(key_package, 'DeviceInfo/Manufacturer')
self.serial = findtext(key_package, 'DeviceInfo/SerialNo')
self.model = findtext(key_package, 'DeviceInfo/Model')
self.issue_no = findtext(key_package, 'DeviceInfo/IssueNo')
self.device_binding = findtext(
key_package, 'DeviceInfo/DeviceBinding')
self.start_date = findtime(key_package, 'DeviceInfo/StartDate')
self.expiry_date = findtime(key_package, 'DeviceInfo/ExpiryDate')
self.device_userid = findtext(key_package, 'DeviceInfo/UserId')
self.crypto_module = findtext(key_package, 'CryptoModuleInfo/Id')
self.algorithm_suite = findtext(
key_package, 'Key/AlgorithmParameters/Suite')
challenge_format = find(
key_package, 'Key/AlgorithmParameters/ChallengeFormat')
if challenge_format is not None:
self.challenge_encoding = challenge_format.get('Encoding')
self.challenge_min_length = getint(challenge_format, 'Min')
self.challenge_max_length = getint(challenge_format, 'Max')
self.challenge_check = getbool(
challenge_format, 'CheckDigits', getbool(
challenge_format, 'CheckDigit'))
response_format = find(
key_package,
'Key/AlgorithmParameters/ResponseFormat')
if response_format is not None:
self.response_encoding = response_format.get('Encoding')
self.response_length = getint(response_format, 'Length')
self.response_check = getbool(
response_format, 'CheckDigits', getbool(
response_format, 'CheckDigit'))
self.policy.parse(find(key_package, 'Key/Policy'))
def make_xml(self, container):
from pskc.xml import mk_elem
key_package = mk_elem(container, 'pskc:KeyPackage', empty=True)
if any(x is not None
for x in (self.manufacturer, self.serial, self.model,
self.issue_no, self.device_binding, self.start_date,
self.expiry_date, self.device_userid)):
device_info = mk_elem(key_package, 'pskc:DeviceInfo', empty=True)
mk_elem(device_info, 'pskc:Manufacturer', self.manufacturer)
mk_elem(device_info, 'pskc:SerialNo', self.serial)
mk_elem(device_info, 'pskc:Model', self.model)
mk_elem(device_info, 'pskc:IssueNo', self.issue_no)
mk_elem(device_info, 'pskc:DeviceBinding', self.device_binding)
mk_elem(device_info, 'pskc:StartDate', self.start_date)
mk_elem(device_info, 'pskc:ExpiryDate', self.expiry_date)
mk_elem(device_info, 'pskc:UserId', self.device_userid)
if self.crypto_module is not None:
crypto_module = mk_elem(key_package, 'pskc:CryptoModuleInfo',
empty=True)
mk_elem(crypto_module, 'pskc:Id', self.crypto_module)
key = mk_elem(key_package, 'pskc:Key', empty=True, Id=self.id,
Algorithm=self.algorithm, )
mk_elem(key, 'pskc:Issuer', self.issuer)
if any((self.algorithm_suite, self.challenge_encoding,
self.response_encoding, self.response_length)):
parameters = mk_elem(key, 'pskc:AlgorithmParameters', empty=True)
mk_elem(parameters, 'pskc:Suite', self.algorithm_suite)
mk_elem(parameters, 'pskc:ChallengeFormat',
Encoding=self.challenge_encoding,
Min=self.challenge_min_length,
Max=self.challenge_max_length,
CheckDigits=self.challenge_check)
mk_elem(parameters, 'pskc:ResponseFormat',
Encoding=self.response_encoding,
Length=self.response_length,
CheckDigits=self.response_check)
mk_elem(key, 'pskc:KeyProfileId', self.key_profile)
mk_elem(key, 'pskc:KeyReference', self.key_reference)
mk_elem(key, 'pskc:FriendlyName', self.friendly_name)
self._secret.make_xml(key, 'pskc:Secret', 'secret')
self._counter.make_xml(key, 'pskc:Counter', 'counter')
self._time_offset.make_xml(key, 'pskc:Time', 'time_offset')
self._time_interval.make_xml(key, 'pskc:TimeInterval', 'time_interval')
self._time_drift.make_xml(key, 'pskc:TimeDrift', 'time_drif')
mk_elem(key, 'pskc:UserId', self.key_userid)
self.policy.make_xml(key)
secret = property(
fget=lambda self: self._secret.get_value(),
fset=lambda self, x: self._secret.set_value(x),
doc="The secret key itself.")
counter = property(
fget=lambda self: self._counter.get_value(),
fset=lambda self, x: self._counter.set_value(x),
doc="An event counter for event-based OTP.")
time_offset = property(
fget=lambda self: self._time_offset.get_value(),
fset=lambda self, x: self._time_offset.set_value(x),
doc="A time offset for time-based OTP (number of intervals).")
time_interval = property(
fget=lambda self: self._time_interval.get_value(),
fset=lambda self, x: self._time_interval.set_value(x),
doc="A time interval in seconds.")
time_drift = property(
fget=lambda self: self._time_drift.get_value(),
fset=lambda self, x: self._time_drift.set_value(x),
doc="Device clock drift value (number of time intervals).")
def check(self):
"""Check if all MACs in the message are valid."""
if any((self._secret.check(), self._counter.check(),
self._time_offset.check(), self._time_interval.check(),
self._time_drift.check())):
return True
|