Arthur de Jong

Open Source / Free Software developer

summaryrefslogtreecommitdiffstats
path: root/tests/gis_tests/geos_tests/test_geos.py
blob: b0f3a80ac4d54c037b85f85803e6b035daa78e23 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
from __future__ import unicode_literals

import ctypes
import json
import random
import unittest
from binascii import a2b_hex, b2a_hex
from io import BytesIO
from unittest import skipUnless

from django.contrib.gis import gdal
from django.contrib.gis.gdal import HAS_GDAL
from django.contrib.gis.geos import (
    HAS_GEOS, GeometryCollection, GEOSException, GEOSGeometry, LinearRing,
    LineString, MultiLineString, MultiPoint, MultiPolygon, Point, Polygon,
    fromfile, fromstr,
)
from django.contrib.gis.geos.base import GEOSBase
from django.contrib.gis.shortcuts import numpy
from django.template import Context
from django.template.engine import Engine
from django.test import mock
from django.utils import six
from django.utils.encoding import force_bytes
from django.utils.six.moves import range

from ..test_data import TestDataMixin


@skipUnless(HAS_GEOS, "Geos is required.")
class GEOSTest(unittest.TestCase, TestDataMixin):

    def test_base(self):
        "Tests out the GEOSBase class."
        # Testing out GEOSBase class, which provides a `ptr` property
        # that abstracts out access to underlying C pointers.
        class FakeGeom1(GEOSBase):
            pass

        # This one only accepts pointers to floats
        c_float_p = ctypes.POINTER(ctypes.c_float)

        class FakeGeom2(GEOSBase):
            ptr_type = c_float_p

        # Default ptr_type is `c_void_p`.
        fg1 = FakeGeom1()
        # Default ptr_type is C float pointer
        fg2 = FakeGeom2()

        # These assignments are OK -- None is allowed because
        # it's equivalent to the NULL pointer.
        fg1.ptr = ctypes.c_void_p()
        fg1.ptr = None
        fg2.ptr = c_float_p(ctypes.c_float(5.23))
        fg2.ptr = None

        # Because pointers have been set to NULL, an exception should be
        # raised when we try to access it.  Raising an exception is
        # preferable to a segmentation fault that commonly occurs when
        # a C method is given a NULL memory reference.
        for fg in (fg1, fg2):
            # Equivalent to `fg.ptr`
            self.assertRaises(GEOSException, fg._get_ptr)

        # Anything that is either not None or the acceptable pointer type will
        # result in a TypeError when trying to assign it to the `ptr` property.
        # Thus, memory addresses (integers) and pointers of the incorrect type
        # (in `bad_ptrs`) will not be allowed.
        bad_ptrs = (5, ctypes.c_char_p(b'foobar'))
        for bad_ptr in bad_ptrs:
            # Equivalent to `fg.ptr = bad_ptr`
            self.assertRaises(TypeError, fg1._set_ptr, bad_ptr)
            self.assertRaises(TypeError, fg2._set_ptr, bad_ptr)

    def test_wkt(self):
        "Testing WKT output."
        for g in self.geometries.wkt_out:
            geom = fromstr(g.wkt)
            if geom.hasz:
                self.assertEqual(g.ewkt, geom.wkt)

    def test_hex(self):
        "Testing HEX output."
        for g in self.geometries.hex_wkt:
            geom = fromstr(g.wkt)
            self.assertEqual(g.hex, geom.hex.decode())

    def test_hexewkb(self):
        "Testing (HEX)EWKB output."
        # For testing HEX(EWKB).
        ogc_hex = b'01010000000000000000000000000000000000F03F'
        ogc_hex_3d = b'01010000800000000000000000000000000000F03F0000000000000040'
        # `SELECT ST_AsHEXEWKB(ST_GeomFromText('POINT(0 1)', 4326));`
        hexewkb_2d = b'0101000020E61000000000000000000000000000000000F03F'
        # `SELECT ST_AsHEXEWKB(ST_GeomFromEWKT('SRID=4326;POINT(0 1 2)'));`
        hexewkb_3d = b'01010000A0E61000000000000000000000000000000000F03F0000000000000040'

        pnt_2d = Point(0, 1, srid=4326)
        pnt_3d = Point(0, 1, 2, srid=4326)

        # OGC-compliant HEX will not have SRID value.
        self.assertEqual(ogc_hex, pnt_2d.hex)
        self.assertEqual(ogc_hex_3d, pnt_3d.hex)

        # HEXEWKB should be appropriate for its dimension -- have to use an
        # a WKBWriter w/dimension set accordingly, else GEOS will insert
        # garbage into 3D coordinate if there is none.
        self.assertEqual(hexewkb_2d, pnt_2d.hexewkb)
        self.assertEqual(hexewkb_3d, pnt_3d.hexewkb)
        self.assertEqual(True, GEOSGeometry(hexewkb_3d).hasz)

        # Same for EWKB.
        self.assertEqual(six.memoryview(a2b_hex(hexewkb_2d)), pnt_2d.ewkb)
        self.assertEqual(six.memoryview(a2b_hex(hexewkb_3d)), pnt_3d.ewkb)

        # Redundant sanity check.
        self.assertEqual(4326, GEOSGeometry(hexewkb_2d).srid)

    def test_kml(self):
        "Testing KML output."
        for tg in self.geometries.wkt_out:
            geom = fromstr(tg.wkt)
            kml = getattr(tg, 'kml', False)
            if kml:
                self.assertEqual(kml, geom.kml)

    def test_errors(self):
        "Testing the Error handlers."
        # string-based
        for err in self.geometries.errors:
            with self.assertRaises((GEOSException, ValueError)):
                fromstr(err.wkt)

        # Bad WKB
        self.assertRaises(GEOSException, GEOSGeometry, six.memoryview(b'0'))

        class NotAGeometry(object):
            pass

        # Some other object
        self.assertRaises(TypeError, GEOSGeometry, NotAGeometry())
        # None
        self.assertRaises(TypeError, GEOSGeometry, None)

    def test_wkb(self):
        "Testing WKB output."
        for g in self.geometries.hex_wkt:
            geom = fromstr(g.wkt)
            wkb = geom.wkb
            self.assertEqual(b2a_hex(wkb).decode().upper(), g.hex)

    def test_create_hex(self):
        "Testing creation from HEX."
        for g in self.geometries.hex_wkt:
            geom_h = GEOSGeometry(g.hex)
            # we need to do this so decimal places get normalized
            geom_t = fromstr(g.wkt)
            self.assertEqual(geom_t.wkt, geom_h.wkt)

    def test_create_wkb(self):
        "Testing creation from WKB."
        for g in self.geometries.hex_wkt:
            wkb = six.memoryview(a2b_hex(g.hex.encode()))
            geom_h = GEOSGeometry(wkb)
            # we need to do this so decimal places get normalized
            geom_t = fromstr(g.wkt)
            self.assertEqual(geom_t.wkt, geom_h.wkt)

    def test_ewkt(self):
        "Testing EWKT."
        srids = (-1, 32140)
        for srid in srids:
            for p in self.geometries.polygons:
                ewkt = 'SRID=%d;%s' % (srid, p.wkt)
                poly = fromstr(ewkt)
                self.assertEqual(srid, poly.srid)
                self.assertEqual(srid, poly.shell.srid)
                self.assertEqual(srid, fromstr(poly.ewkt).srid)  # Checking export

    @skipUnless(HAS_GDAL, "GDAL is required.")
    def test_json(self):
        "Testing GeoJSON input/output (via GDAL)."
        for g in self.geometries.json_geoms:
            geom = GEOSGeometry(g.wkt)
            if not hasattr(g, 'not_equal'):
                # Loading jsons to prevent decimal differences
                self.assertEqual(json.loads(g.json), json.loads(geom.json))
                self.assertEqual(json.loads(g.json), json.loads(geom.geojson))
            self.assertEqual(GEOSGeometry(g.wkt), GEOSGeometry(geom.json))

    def test_fromfile(self):
        "Testing the fromfile() factory."
        ref_pnt = GEOSGeometry('POINT(5 23)')

        wkt_f = BytesIO()
        wkt_f.write(force_bytes(ref_pnt.wkt))
        wkb_f = BytesIO()
        wkb_f.write(bytes(ref_pnt.wkb))

        # Other tests use `fromfile()` on string filenames so those
        # aren't tested here.
        for fh in (wkt_f, wkb_f):
            fh.seek(0)
            pnt = fromfile(fh)
            self.assertEqual(ref_pnt, pnt)

    def test_eq(self):
        "Testing equivalence."
        p = fromstr('POINT(5 23)')
        self.assertEqual(p, p.wkt)
        self.assertNotEqual(p, 'foo')
        ls = fromstr('LINESTRING(0 0, 1 1, 5 5)')
        self.assertEqual(ls, ls.wkt)
        self.assertNotEqual(p, 'bar')
        # Error shouldn't be raise on equivalence testing with
        # an invalid type.
        for g in (p, ls):
            self.assertNotEqual(g, None)
            self.assertNotEqual(g, {'foo': 'bar'})
            self.assertNotEqual(g, False)

    def test_points(self):
        "Testing Point objects."
        prev = fromstr('POINT(0 0)')
        for p in self.geometries.points:
            # Creating the point from the WKT
            pnt = fromstr(p.wkt)
            self.assertEqual(pnt.geom_type, 'Point')
            self.assertEqual(pnt.geom_typeid, 0)
            self.assertEqual(pnt.dims, 0)
            self.assertEqual(p.x, pnt.x)
            self.assertEqual(p.y, pnt.y)
            self.assertEqual(pnt, fromstr(p.wkt))
            self.assertEqual(False, pnt == prev)  # Use assertEqual to test __eq__

            # Making sure that the point's X, Y components are what we expect
            self.assertAlmostEqual(p.x, pnt.tuple[0], 9)
            self.assertAlmostEqual(p.y, pnt.tuple[1], 9)

            # Testing the third dimension, and getting the tuple arguments
            if hasattr(p, 'z'):
                self.assertEqual(True, pnt.hasz)
                self.assertEqual(p.z, pnt.z)
                self.assertEqual(p.z, pnt.tuple[2], 9)
                tup_args = (p.x, p.y, p.z)
                set_tup1 = (2.71, 3.14, 5.23)
                set_tup2 = (5.23, 2.71, 3.14)
            else:
                self.assertEqual(False, pnt.hasz)
                self.assertIsNone(pnt.z)
                tup_args = (p.x, p.y)
                set_tup1 = (2.71, 3.14)
                set_tup2 = (3.14, 2.71)

            # Centroid operation on point should be point itself
            self.assertEqual(p.centroid, pnt.centroid.tuple)

            # Now testing the different constructors
            pnt2 = Point(tup_args)  # e.g., Point((1, 2))
            pnt3 = Point(*tup_args)  # e.g., Point(1, 2)
            self.assertEqual(pnt, pnt2)
            self.assertEqual(pnt, pnt3)

            # Now testing setting the x and y
            pnt.y = 3.14
            pnt.x = 2.71
            self.assertEqual(3.14, pnt.y)
            self.assertEqual(2.71, pnt.x)

            # Setting via the tuple/coords property
            pnt.tuple = set_tup1
            self.assertEqual(set_tup1, pnt.tuple)
            pnt.coords = set_tup2
            self.assertEqual(set_tup2, pnt.coords)

            prev = pnt  # setting the previous geometry

    def test_multipoints(self):
        "Testing MultiPoint objects."
        for mp in self.geometries.multipoints:
            mpnt = fromstr(mp.wkt)
            self.assertEqual(mpnt.geom_type, 'MultiPoint')
            self.assertEqual(mpnt.geom_typeid, 4)
            self.assertEqual(mpnt.dims, 0)

            self.assertAlmostEqual(mp.centroid[0], mpnt.centroid.tuple[0], 9)
            self.assertAlmostEqual(mp.centroid[1], mpnt.centroid.tuple[1], 9)

            self.assertRaises(IndexError, mpnt.__getitem__, len(mpnt))
            self.assertEqual(mp.centroid, mpnt.centroid.tuple)
            self.assertEqual(mp.coords, tuple(m.tuple for m in mpnt))
            for p in mpnt:
                self.assertEqual(p.geom_type, 'Point')
                self.assertEqual(p.geom_typeid, 0)
                self.assertEqual(p.empty, False)
                self.assertEqual(p.valid, True)

    def test_linestring(self):
        "Testing LineString objects."
        prev = fromstr('POINT(0 0)')
        for l in self.geometries.linestrings:
            ls = fromstr(l.wkt)
            self.assertEqual(ls.geom_type, 'LineString')
            self.assertEqual(ls.geom_typeid, 1)
            self.assertEqual(ls.dims, 1)
            self.assertEqual(ls.empty, False)
            self.assertEqual(ls.ring, False)
            if hasattr(l, 'centroid'):
                self.assertEqual(l.centroid, ls.centroid.tuple)
            if hasattr(l, 'tup'):
                self.assertEqual(l.tup, ls.tuple)

            self.assertEqual(ls, fromstr(l.wkt))
            self.assertEqual(False, ls == prev)  # Use assertEqual to test __eq__
            self.assertRaises(IndexError, ls.__getitem__, len(ls))
            prev = ls

            # Creating a LineString from a tuple, list, and numpy array
            self.assertEqual(ls, LineString(ls.tuple))  # tuple
            self.assertEqual(ls, LineString(*ls.tuple))  # as individual arguments
            self.assertEqual(ls, LineString([list(tup) for tup in ls.tuple]))  # as list
            # Point individual arguments
            self.assertEqual(ls.wkt, LineString(*tuple(Point(tup) for tup in ls.tuple)).wkt)
            if numpy:
                self.assertEqual(ls, LineString(numpy.array(ls.tuple)))  # as numpy array

    def test_multilinestring(self):
        "Testing MultiLineString objects."
        prev = fromstr('POINT(0 0)')
        for l in self.geometries.multilinestrings:
            ml = fromstr(l.wkt)
            self.assertEqual(ml.geom_type, 'MultiLineString')
            self.assertEqual(ml.geom_typeid, 5)
            self.assertEqual(ml.dims, 1)

            self.assertAlmostEqual(l.centroid[0], ml.centroid.x, 9)
            self.assertAlmostEqual(l.centroid[1], ml.centroid.y, 9)

            self.assertEqual(ml, fromstr(l.wkt))
            self.assertEqual(False, ml == prev)  # Use assertEqual to test __eq__
            prev = ml

            for ls in ml:
                self.assertEqual(ls.geom_type, 'LineString')
                self.assertEqual(ls.geom_typeid, 1)
                self.assertEqual(ls.empty, False)

            self.assertRaises(IndexError, ml.__getitem__, len(ml))
            self.assertEqual(ml.wkt, MultiLineString(*tuple(s.clone() for s in ml)).wkt)
            self.assertEqual(ml, MultiLineString(*tuple(LineString(s.tuple) for s in ml)))

    def test_linearring(self):
        "Testing LinearRing objects."
        for rr in self.geometries.linearrings:
            lr = fromstr(rr.wkt)
            self.assertEqual(lr.geom_type, 'LinearRing')
            self.assertEqual(lr.geom_typeid, 2)
            self.assertEqual(lr.dims, 1)
            self.assertEqual(rr.n_p, len(lr))
            self.assertEqual(True, lr.valid)
            self.assertEqual(False, lr.empty)

            # Creating a LinearRing from a tuple, list, and numpy array
            self.assertEqual(lr, LinearRing(lr.tuple))
            self.assertEqual(lr, LinearRing(*lr.tuple))
            self.assertEqual(lr, LinearRing([list(tup) for tup in lr.tuple]))
            if numpy:
                self.assertEqual(lr, LinearRing(numpy.array(lr.tuple)))

    def test_polygons_from_bbox(self):
        "Testing `from_bbox` class method."
        bbox = (-180, -90, 180, 90)
        p = Polygon.from_bbox(bbox)
        self.assertEqual(bbox, p.extent)

        # Testing numerical precision
        x = 3.14159265358979323
        bbox = (0, 0, 1, x)
        p = Polygon.from_bbox(bbox)
        y = p.extent[-1]
        self.assertEqual(format(x, '.13f'), format(y, '.13f'))

    def test_polygons(self):
        "Testing Polygon objects."

        prev = fromstr('POINT(0 0)')
        for p in self.geometries.polygons:
            # Creating the Polygon, testing its properties.
            poly = fromstr(p.wkt)
            self.assertEqual(poly.geom_type, 'Polygon')
            self.assertEqual(poly.geom_typeid, 3)
            self.assertEqual(poly.dims, 2)
            self.assertEqual(poly.empty, False)
            self.assertEqual(poly.ring, False)
            self.assertEqual(p.n_i, poly.num_interior_rings)
            self.assertEqual(p.n_i + 1, len(poly))  # Testing __len__
            self.assertEqual(p.n_p, poly.num_points)

            # Area & Centroid
            self.assertAlmostEqual(p.area, poly.area, 9)
            self.assertAlmostEqual(p.centroid[0], poly.centroid.tuple[0], 9)
            self.assertAlmostEqual(p.centroid[1], poly.centroid.tuple[1], 9)

            # Testing the geometry equivalence
            self.assertEqual(poly, fromstr(p.wkt))
            # Should not be equal to previous geometry
            self.assertEqual(False, poly == prev)  # Use assertEqual to test __eq__
            self.assertNotEqual(poly, prev)  # Use assertNotEqual to test __ne__

            # Testing the exterior ring
            ring = poly.exterior_ring
            self.assertEqual(ring.geom_type, 'LinearRing')
            self.assertEqual(ring.geom_typeid, 2)
            if p.ext_ring_cs:
                self.assertEqual(p.ext_ring_cs, ring.tuple)
                self.assertEqual(p.ext_ring_cs, poly[0].tuple)  # Testing __getitem__

            # Testing __getitem__ and __setitem__ on invalid indices
            self.assertRaises(IndexError, poly.__getitem__, len(poly))
            self.assertRaises(IndexError, poly.__setitem__, len(poly), False)
            self.assertRaises(IndexError, poly.__getitem__, -1 * len(poly) - 1)

            # Testing __iter__
            for r in poly:
                self.assertEqual(r.geom_type, 'LinearRing')
                self.assertEqual(r.geom_typeid, 2)

            # Testing polygon construction.
            self.assertRaises(TypeError, Polygon, 0, [1, 2, 3])
            self.assertRaises(TypeError, Polygon, 'foo')

            # Polygon(shell, (hole1, ... holeN))
            rings = tuple(r for r in poly)
            self.assertEqual(poly, Polygon(rings[0], rings[1:]))

            # Polygon(shell_tuple, hole_tuple1, ... , hole_tupleN)
            ring_tuples = tuple(r.tuple for r in poly)
            self.assertEqual(poly, Polygon(*ring_tuples))

            # Constructing with tuples of LinearRings.
            self.assertEqual(poly.wkt, Polygon(*tuple(r for r in poly)).wkt)
            self.assertEqual(poly.wkt, Polygon(*tuple(LinearRing(r.tuple) for r in poly)).wkt)

    def test_polygons_templates(self):
        # Accessing Polygon attributes in templates should work.
        engine = Engine()
        template = engine.from_string('{{ polygons.0.wkt }}')
        polygons = [fromstr(p.wkt) for p in self.geometries.multipolygons[:2]]
        content = template.render(Context({'polygons': polygons}))
        self.assertIn('MULTIPOLYGON (((100', content)

    def test_polygon_comparison(self):
        p1 = Polygon(((0, 0), (0, 1), (1, 1), (1, 0), (0, 0)))
        p2 = Polygon(((0, 0), (0, 1), (1, 0), (0, 0)))
        self.assertGreater(p1, p2)
        self.assertLess(p2, p1)

        p3 = Polygon(((0, 0), (0, 1), (1, 1), (2, 0), (0, 0)))
        p4 = Polygon(((0, 0), (0, 1), (2, 2), (1, 0), (0, 0)))
        self.assertGreater(p4, p3)
        self.assertLess(p3, p4)

    def test_multipolygons(self):
        "Testing MultiPolygon objects."
        fromstr('POINT (0 0)')
        for mp in self.geometries.multipolygons:
            mpoly = fromstr(mp.wkt)
            self.assertEqual(mpoly.geom_type, 'MultiPolygon')
            self.assertEqual(mpoly.geom_typeid, 6)
            self.assertEqual(mpoly.dims, 2)
            self.assertEqual(mp.valid, mpoly.valid)

            if mp.valid:
                self.assertEqual(mp.num_geom, mpoly.num_geom)
                self.assertEqual(mp.n_p, mpoly.num_coords)
                self.assertEqual(mp.num_geom, len(mpoly))
                self.assertRaises(IndexError, mpoly.__getitem__, len(mpoly))
                for p in mpoly:
                    self.assertEqual(p.geom_type, 'Polygon')
                    self.assertEqual(p.geom_typeid, 3)
                    self.assertEqual(p.valid, True)
                self.assertEqual(mpoly.wkt, MultiPolygon(*tuple(poly.clone() for poly in mpoly)).wkt)

    def test_memory_hijinks(self):
        "Testing Geometry __del__() on rings and polygons."
        # #### Memory issues with rings and poly

        # These tests are needed to ensure sanity with writable geometries.

        # Getting a polygon with interior rings, and pulling out the interior rings
        poly = fromstr(self.geometries.polygons[1].wkt)
        ring1 = poly[0]
        ring2 = poly[1]

        # These deletes should be 'harmless' since they are done on child geometries
        del ring1
        del ring2
        ring1 = poly[0]
        ring2 = poly[1]

        # Deleting the polygon
        del poly

        # Access to these rings is OK since they are clones.
        str(ring1)
        str(ring2)

    def test_coord_seq(self):
        "Testing Coordinate Sequence objects."
        for p in self.geometries.polygons:
            if p.ext_ring_cs:
                # Constructing the polygon and getting the coordinate sequence
                poly = fromstr(p.wkt)
                cs = poly.exterior_ring.coord_seq

                self.assertEqual(p.ext_ring_cs, cs.tuple)  # done in the Polygon test too.
                self.assertEqual(len(p.ext_ring_cs), len(cs))  # Making sure __len__ works

                # Checks __getitem__ and __setitem__
                for i in range(len(p.ext_ring_cs)):
                    c1 = p.ext_ring_cs[i]  # Expected value
                    c2 = cs[i]  # Value from coordseq
                    self.assertEqual(c1, c2)

                    # Constructing the test value to set the coordinate sequence with
                    if len(c1) == 2:
                        tset = (5, 23)
                    else:
                        tset = (5, 23, 8)
                    cs[i] = tset

                    # Making sure every set point matches what we expect
                    for j in range(len(tset)):
                        cs[i] = tset
                        self.assertEqual(tset[j], cs[i][j])

    def test_relate_pattern(self):
        "Testing relate() and relate_pattern()."
        g = fromstr('POINT (0 0)')
        self.assertRaises(GEOSException, g.relate_pattern, 0, 'invalid pattern, yo')
        for rg in self.geometries.relate_geoms:
            a = fromstr(rg.wkt_a)
            b = fromstr(rg.wkt_b)
            self.assertEqual(rg.result, a.relate_pattern(b, rg.pattern))
            self.assertEqual(rg.pattern, a.relate(b))

    def test_intersection(self):
        "Testing intersects() and intersection()."
        for i in range(len(self.geometries.topology_geoms)):
            a = fromstr(self.geometries.topology_geoms[i].wkt_a)
            b = fromstr(self.geometries.topology_geoms[i].wkt_b)
            i1 = fromstr(self.geometries.intersect_geoms[i].wkt)
            self.assertEqual(True, a.intersects(b))
            i2 = a.intersection(b)
            self.assertEqual(i1, i2)
            self.assertEqual(i1, a & b)  # __and__ is intersection operator
            a &= b  # testing __iand__
            self.assertEqual(i1, a)

    def test_union(self):
        "Testing union()."
        for i in range(len(self.geometries.topology_geoms)):
            a = fromstr(self.geometries.topology_geoms[i].wkt_a)
            b = fromstr(self.geometries.topology_geoms[i].wkt_b)
            u1 = fromstr(self.geometries.union_geoms[i].wkt)
            u2 = a.union(b)
            self.assertEqual(u1, u2)
            self.assertEqual(u1, a | b)  # __or__ is union operator
            a |= b  # testing __ior__
            self.assertEqual(u1, a)

    def test_difference(self):
        "Testing difference()."
        for i in range(len(self.geometries.topology_geoms)):
            a = fromstr(self.geometries.topology_geoms[i].wkt_a)
            b = fromstr(self.geometries.topology_geoms[i].wkt_b)
            d1 = fromstr(self.geometries.diff_geoms[i].wkt)
            d2 = a.difference(b)
            self.assertEqual(d1, d2)
            self.assertEqual(d1, a - b)  # __sub__ is difference operator
            a -= b  # testing __isub__
            self.assertEqual(d1, a)

    def test_symdifference(self):
        "Testing sym_difference()."
        for i in range(len(self.geometries.topology_geoms)):
            a = fromstr(self.geometries.topology_geoms[i].wkt_a)
            b = fromstr(self.geometries.topology_geoms[i].wkt_b)
            d1 = fromstr(self.geometries.sdiff_geoms[i].wkt)
            d2 = a.sym_difference(b)
            self.assertEqual(d1, d2)
            self.assertEqual(d1, a ^ b)  # __xor__ is symmetric difference operator
            a ^= b  # testing __ixor__
            self.assertEqual(d1, a)

    def test_buffer(self):
        "Testing buffer()."
        for bg in self.geometries.buffer_geoms:
            g = fromstr(bg.wkt)

            # The buffer we expect
            exp_buf = fromstr(bg.buffer_wkt)
            quadsegs = bg.quadsegs
            width = bg.width

            # Can't use a floating-point for the number of quadsegs.
            self.assertRaises(ctypes.ArgumentError, g.buffer, width, float(quadsegs))

            # Constructing our buffer
            buf = g.buffer(width, quadsegs)
            self.assertEqual(exp_buf.num_coords, buf.num_coords)
            self.assertEqual(len(exp_buf), len(buf))

            # Now assuring that each point in the buffer is almost equal
            for j in range(len(exp_buf)):
                exp_ring = exp_buf[j]
                buf_ring = buf[j]
                self.assertEqual(len(exp_ring), len(buf_ring))
                for k in range(len(exp_ring)):
                    # Asserting the X, Y of each point are almost equal (due to floating point imprecision)
                    self.assertAlmostEqual(exp_ring[k][0], buf_ring[k][0], 9)
                    self.assertAlmostEqual(exp_ring[k][1], buf_ring[k][1], 9)

    def test_srid(self):
        "Testing the SRID property and keyword."
        # Testing SRID keyword on Point
        pnt = Point(5, 23, srid=4326)
        self.assertEqual(4326, pnt.srid)
        pnt.srid = 3084
        self.assertEqual(3084, pnt.srid)
        self.assertRaises(ctypes.ArgumentError, pnt.set_srid, '4326')

        # Testing SRID keyword on fromstr(), and on Polygon rings.
        poly = fromstr(self.geometries.polygons[1].wkt, srid=4269)
        self.assertEqual(4269, poly.srid)
        for ring in poly:
            self.assertEqual(4269, ring.srid)
        poly.srid = 4326
        self.assertEqual(4326, poly.shell.srid)

        # Testing SRID keyword on GeometryCollection
        gc = GeometryCollection(Point(5, 23), LineString((0, 0), (1.5, 1.5), (3, 3)), srid=32021)
        self.assertEqual(32021, gc.srid)
        for i in range(len(gc)):
            self.assertEqual(32021, gc[i].srid)

        # GEOS may get the SRID from HEXEWKB
        # 'POINT(5 23)' at SRID=4326 in hex form -- obtained from PostGIS
        # using `SELECT GeomFromText('POINT (5 23)', 4326);`.
        hex = '0101000020E610000000000000000014400000000000003740'
        p1 = fromstr(hex)
        self.assertEqual(4326, p1.srid)

        p2 = fromstr(p1.hex)
        self.assertIsNone(p2.srid)
        p3 = fromstr(p1.hex, srid=-1)  # -1 is intended.
        self.assertEqual(-1, p3.srid)

        # Testing that geometry SRID could be set to its own value
        pnt_wo_srid = Point(1, 1)
        pnt_wo_srid.srid = pnt_wo_srid.srid

    @skipUnless(HAS_GDAL, "GDAL is required.")
    def test_custom_srid(self):
        """Test with a null srid and a srid unknown to GDAL."""
        for srid in [None, 999999]:
            pnt = Point(111200, 220900, srid=srid)
            self.assertTrue(pnt.ewkt.startswith(("SRID=%s;" % srid if srid else '') + "POINT (111200.0"))
            self.assertIsInstance(pnt.ogr, gdal.OGRGeometry)
            self.assertIsNone(pnt.srs)

            # Test conversion from custom to a known srid
            c2w = gdal.CoordTransform(
                gdal.SpatialReference(
                    '+proj=mill +lat_0=0 +lon_0=0 +x_0=0 +y_0=0 +R_A +ellps=WGS84 '
                    '+datum=WGS84 +units=m +no_defs'
                ),
                gdal.SpatialReference(4326))
            new_pnt = pnt.transform(c2w, clone=True)
            self.assertEqual(new_pnt.srid, 4326)
            self.assertAlmostEqual(new_pnt.x, 1, 3)
            self.assertAlmostEqual(new_pnt.y, 2, 3)

    def test_mutable_geometries(self):
        "Testing the mutability of Polygons and Geometry Collections."
        # ### Testing the mutability of Polygons ###
        for p in self.geometries.polygons:
            poly = fromstr(p.wkt)

            # Should only be able to use __setitem__ with LinearRing geometries.
            self.assertRaises(TypeError, poly.__setitem__, 0, LineString((1, 1), (2, 2)))

            # Constructing the new shell by adding 500 to every point in the old shell.
            shell_tup = poly.shell.tuple
            new_coords = []
            for point in shell_tup:
                new_coords.append((point[0] + 500., point[1] + 500.))
            new_shell = LinearRing(*tuple(new_coords))

            # Assigning polygon's exterior ring w/the new shell
            poly.exterior_ring = new_shell
            str(new_shell)  # new shell is still accessible
            self.assertEqual(poly.exterior_ring, new_shell)
            self.assertEqual(poly[0], new_shell)

        # ### Testing the mutability of Geometry Collections
        for tg in self.geometries.multipoints:
            mp = fromstr(tg.wkt)
            for i in range(len(mp)):
                # Creating a random point.
                pnt = mp[i]
                new = Point(random.randint(21, 100), random.randint(21, 100))
                # Testing the assignment
                mp[i] = new
                str(new)  # what was used for the assignment is still accessible
                self.assertEqual(mp[i], new)
                self.assertEqual(mp[i].wkt, new.wkt)
                self.assertNotEqual(pnt, mp[i])

        # MultiPolygons involve much more memory management because each
        # Polygon w/in the collection has its own rings.
        for tg in self.geometries.multipolygons:
            mpoly = fromstr(tg.wkt)
            for i in range(len(mpoly)):
                poly = mpoly[i]
                old_poly = mpoly[i]
                # Offsetting the each ring in the polygon by 500.
                for j in range(len(poly)):
                    r = poly[j]
                    for k in range(len(r)):
                        r[k] = (r[k][0] + 500., r[k][1] + 500.)
                    poly[j] = r

                self.assertNotEqual(mpoly[i], poly)
                # Testing the assignment
                mpoly[i] = poly
                str(poly)  # Still accessible
                self.assertEqual(mpoly[i], poly)
                self.assertNotEqual(mpoly[i], old_poly)

        # Extreme (!!) __setitem__ -- no longer works, have to detect
        # in the first object that __setitem__ is called in the subsequent
        # objects -- maybe mpoly[0, 0, 0] = (3.14, 2.71)?
        # mpoly[0][0][0] = (3.14, 2.71)
        # self.assertEqual((3.14, 2.71), mpoly[0][0][0])
        # Doing it more slowly..
        # self.assertEqual((3.14, 2.71), mpoly[0].shell[0])
        # del mpoly

    def test_point_list_assignment(self):
        p = Point(0, 0)

        p[:] = (1, 2, 3)
        self.assertEqual(p, Point(1, 2, 3))

        p[:] = (1, 2)
        self.assertEqual(p.wkt, Point(1, 2))

        with self.assertRaises(ValueError):
            p[:] = (1,)
        with self.assertRaises(ValueError):
            p[:] = (1, 2, 3, 4, 5)

    def test_linestring_list_assignment(self):
        ls = LineString((0, 0), (1, 1))

        ls[:] = ((0, 0), (1, 1), (2, 2))
        self.assertEqual(ls, LineString((0, 0), (1, 1), (2, 2)))

        with self.assertRaises(ValueError):
            ls[:] = (1,)

    def test_linearring_list_assignment(self):
        ls = LinearRing((0, 0), (0, 1), (1, 1), (0, 0))

        ls[:] = ((0, 0), (0, 1), (1, 1), (1, 0), (0, 0))
        self.assertEqual(ls, LinearRing((0, 0), (0, 1), (1, 1), (1, 0), (0, 0)))

        with self.assertRaises(ValueError):
            ls[:] = ((0, 0), (1, 1), (2, 2))

    def test_threed(self):
        "Testing three-dimensional geometries."
        # Testing a 3D Point
        pnt = Point(2, 3, 8)
        self.assertEqual((2., 3., 8.), pnt.coords)
        self.assertRaises(TypeError, pnt.set_coords, (1., 2.))
        pnt.coords = (1., 2., 3.)
        self.assertEqual((1., 2., 3.), pnt.coords)

        # Testing a 3D LineString
        ls = LineString((2., 3., 8.), (50., 250., -117.))
        self.assertEqual(((2., 3., 8.), (50., 250., -117.)), ls.tuple)
        self.assertRaises(TypeError, ls.__setitem__, 0, (1., 2.))
        ls[0] = (1., 2., 3.)
        self.assertEqual((1., 2., 3.), ls[0])

    def test_distance(self):
        "Testing the distance() function."
        # Distance to self should be 0.
        pnt = Point(0, 0)
        self.assertEqual(0.0, pnt.distance(Point(0, 0)))

        # Distance should be 1
        self.assertEqual(1.0, pnt.distance(Point(0, 1)))

        # Distance should be ~ sqrt(2)
        self.assertAlmostEqual(1.41421356237, pnt.distance(Point(1, 1)), 11)

        # Distances are from the closest vertex in each geometry --
        #  should be 3 (distance from (2, 2) to (5, 2)).
        ls1 = LineString((0, 0), (1, 1), (2, 2))
        ls2 = LineString((5, 2), (6, 1), (7, 0))
        self.assertEqual(3, ls1.distance(ls2))

    def test_length(self):
        "Testing the length property."
        # Points have 0 length.
        pnt = Point(0, 0)
        self.assertEqual(0.0, pnt.length)

        # Should be ~ sqrt(2)
        ls = LineString((0, 0), (1, 1))
        self.assertAlmostEqual(1.41421356237, ls.length, 11)

        # Should be circumference of Polygon
        poly = Polygon(LinearRing((0, 0), (0, 1), (1, 1), (1, 0), (0, 0)))
        self.assertEqual(4.0, poly.length)

        # Should be sum of each element's length in collection.
        mpoly = MultiPolygon(poly.clone(), poly)
        self.assertEqual(8.0, mpoly.length)

    def test_emptyCollections(self):
        "Testing empty geometries and collections."
        gc1 = GeometryCollection([])
        gc2 = fromstr('GEOMETRYCOLLECTION EMPTY')
        pnt = fromstr('POINT EMPTY')
        ls = fromstr('LINESTRING EMPTY')
        poly = fromstr('POLYGON EMPTY')
        mls = fromstr('MULTILINESTRING EMPTY')
        mpoly1 = fromstr('MULTIPOLYGON EMPTY')
        mpoly2 = MultiPolygon(())

        for g in [gc1, gc2, pnt, ls, poly, mls, mpoly1, mpoly2]:
            self.assertEqual(True, g.empty)

            # Testing len() and num_geom.
            if isinstance(g, Polygon):
                self.assertEqual(1, len(g))  # Has one empty linear ring
                self.assertEqual(1, g.num_geom)
                self.assertEqual(0, len(g[0]))
            elif isinstance(g, (Point, LineString)):
                self.assertEqual(1, g.num_geom)
                self.assertEqual(0, len(g))
            else:
                self.assertEqual(0, g.num_geom)
                self.assertEqual(0, len(g))

            # Testing __getitem__ (doesn't work on Point or Polygon)
            if isinstance(g, Point):
                self.assertRaises(IndexError, g.get_x)
            elif isinstance(g, Polygon):
                lr = g.shell
                self.assertEqual('LINEARRING EMPTY', lr.wkt)
                self.assertEqual(0, len(lr))
                self.assertEqual(True, lr.empty)
                self.assertRaises(IndexError, lr.__getitem__, 0)
            else:
                self.assertRaises(IndexError, g.__getitem__, 0)

    def test_collection_dims(self):
        gc = GeometryCollection([])
        self.assertEqual(gc.dims, -1)

        gc = GeometryCollection(Point(0, 0))
        self.assertEqual(gc.dims, 0)

        gc = GeometryCollection(LineString((0, 0), (1, 1)), Point(0, 0))
        self.assertEqual(gc.dims, 1)

        gc = GeometryCollection(LineString((0, 0), (1, 1)), Polygon(((0, 0), (0, 1), (1, 1), (0, 0))), Point(0, 0))
        self.assertEqual(gc.dims, 2)

    def test_collections_of_collections(self):
        "Testing GeometryCollection handling of other collections."
        # Creating a GeometryCollection WKT string composed of other
        # collections and polygons.
        coll = [mp.wkt for mp in self.geometries.multipolygons if mp.valid]
        coll.extend(mls.wkt for mls in self.geometries.multilinestrings)
        coll.extend(p.wkt for p in self.geometries.polygons)
        coll.extend(mp.wkt for mp in self.geometries.multipoints)
        gc_wkt = 'GEOMETRYCOLLECTION(%s)' % ','.join(coll)

        # Should construct ok from WKT
        gc1 = GEOSGeometry(gc_wkt)

        # Should also construct ok from individual geometry arguments.
        gc2 = GeometryCollection(*tuple(g for g in gc1))

        # And, they should be equal.
        self.assertEqual(gc1, gc2)

    @skipUnless(HAS_GDAL, "GDAL is required.")
    def test_gdal(self):
        "Testing `ogr` and `srs` properties."
        g1 = fromstr('POINT(5 23)')
        self.assertIsInstance(g1.ogr, gdal.OGRGeometry)
        self.assertIsNone(g1.srs)

        g1_3d = fromstr('POINT(5 23 8)')
        self.assertIsInstance(g1_3d.ogr, gdal.OGRGeometry)
        self.assertEqual(g1_3d.ogr.z, 8)

        g2 = fromstr('LINESTRING(0 0, 5 5, 23 23)', srid=4326)
        self.assertIsInstance(g2.ogr, gdal.OGRGeometry)
        self.assertIsInstance(g2.srs, gdal.SpatialReference)
        self.assertEqual(g2.hex, g2.ogr.hex)
        self.assertEqual('WGS 84', g2.srs.name)

    def test_copy(self):
        "Testing use with the Python `copy` module."
        import copy
        poly = GEOSGeometry('POLYGON((0 0, 0 23, 23 23, 23 0, 0 0), (5 5, 5 10, 10 10, 10 5, 5 5))')
        cpy1 = copy.copy(poly)
        cpy2 = copy.deepcopy(poly)
        self.assertNotEqual(poly._ptr, cpy1._ptr)
        self.assertNotEqual(poly._ptr, cpy2._ptr)

    @skipUnless(HAS_GDAL, "GDAL is required to transform geometries")
    def test_transform(self):
        "Testing `transform` method."
        orig = GEOSGeometry('POINT (-104.609 38.255)', 4326)
        trans = GEOSGeometry('POINT (992385.4472045 481455.4944650)', 2774)

        # Using a srid, a SpatialReference object, and a CoordTransform object
        # for transformations.
        t1, t2, t3 = orig.clone(), orig.clone(), orig.clone()
        t1.transform(trans.srid)
        t2.transform(gdal.SpatialReference('EPSG:2774'))
        ct = gdal.CoordTransform(gdal.SpatialReference('WGS84'), gdal.SpatialReference(2774))
        t3.transform(ct)

        # Testing use of the `clone` keyword.
        k1 = orig.clone()
        k2 = k1.transform(trans.srid, clone=True)
        self.assertEqual(k1, orig)
        self.assertNotEqual(k1, k2)

        prec = 3
        for p in (t1, t2, t3, k2):
            self.assertAlmostEqual(trans.x, p.x, prec)
            self.assertAlmostEqual(trans.y, p.y, prec)

    @skipUnless(HAS_GDAL, "GDAL is required to transform geometries")
    def test_transform_3d(self):
        p3d = GEOSGeometry('POINT (5 23 100)', 4326)
        p3d.transform(2774)
        self.assertEqual(p3d.z, 100)

    @skipUnless(HAS_GDAL, "GDAL is required.")
    def test_transform_noop(self):
        """ Testing `transform` method (SRID match) """
        # transform() should no-op if source & dest SRIDs match,
        # regardless of whether GDAL is available.
        g = GEOSGeometry('POINT (-104.609 38.255)', 4326)
        gt = g.tuple
        g.transform(4326)
        self.assertEqual(g.tuple, gt)
        self.assertEqual(g.srid, 4326)

        g = GEOSGeometry('POINT (-104.609 38.255)', 4326)
        g1 = g.transform(4326, clone=True)
        self.assertEqual(g1.tuple, g.tuple)
        self.assertEqual(g1.srid, 4326)
        self.assertIsNot(g1, g, "Clone didn't happen")

        with mock.patch('django.contrib.gis.gdal.HAS_GDAL', False):
            g = GEOSGeometry('POINT (-104.609 38.255)', 4326)
            gt = g.tuple
            g.transform(4326)
            self.assertEqual(g.tuple, gt)
            self.assertEqual(g.srid, 4326)

            g = GEOSGeometry('POINT (-104.609 38.255)', 4326)
            g1 = g.transform(4326, clone=True)
            self.assertEqual(g1.tuple, g.tuple)
            self.assertEqual(g1.srid, 4326)
            self.assertIsNot(g1, g, "Clone didn't happen")

    @skipUnless(HAS_GDAL, "GDAL is required.")
    def test_transform_nosrid(self):
        """ Testing `transform` method (no SRID or negative SRID) """

        g = GEOSGeometry('POINT (-104.609 38.255)', srid=None)
        self.assertRaises(GEOSException, g.transform, 2774)

        g = GEOSGeometry('POINT (-104.609 38.255)', srid=None)
        self.assertRaises(GEOSException, g.transform, 2774, clone=True)

        g = GEOSGeometry('POINT (-104.609 38.255)', srid=-1)
        self.assertRaises(GEOSException, g.transform, 2774)

        g = GEOSGeometry('POINT (-104.609 38.255)', srid=-1)
        self.assertRaises(GEOSException, g.transform, 2774, clone=True)

    @mock.patch('django.contrib.gis.gdal.HAS_GDAL', False)
    def test_transform_nogdal(self):
        """ Testing `transform` method (GDAL not available) """
        g = GEOSGeometry('POINT (-104.609 38.255)', 4326)
        self.assertRaises(GEOSException, g.transform, 2774)

        g = GEOSGeometry('POINT (-104.609 38.255)', 4326)
        self.assertRaises(GEOSException, g.transform, 2774, clone=True)

    def test_extent(self):
        "Testing `extent` method."
        # The xmin, ymin, xmax, ymax of the MultiPoint should be returned.
        mp = MultiPoint(Point(5, 23), Point(0, 0), Point(10, 50))
        self.assertEqual((0.0, 0.0, 10.0, 50.0), mp.extent)
        pnt = Point(5.23, 17.8)
        # Extent of points is just the point itself repeated.
        self.assertEqual((5.23, 17.8, 5.23, 17.8), pnt.extent)
        # Testing on the 'real world' Polygon.
        poly = fromstr(self.geometries.polygons[3].wkt)
        ring = poly.shell
        x, y = ring.x, ring.y
        xmin, ymin = min(x), min(y)
        xmax, ymax = max(x), max(y)
        self.assertEqual((xmin, ymin, xmax, ymax), poly.extent)

    def test_pickle(self):
        "Testing pickling and unpickling support."
        # Using both pickle and cPickle -- just 'cause.
        from django.utils.six.moves import cPickle
        import pickle

        # Creating a list of test geometries for pickling,
        # and setting the SRID on some of them.
        def get_geoms(lst, srid=None):
            return [GEOSGeometry(tg.wkt, srid) for tg in lst]
        tgeoms = get_geoms(self.geometries.points)
        tgeoms.extend(get_geoms(self.geometries.multilinestrings, 4326))
        tgeoms.extend(get_geoms(self.geometries.polygons, 3084))
        tgeoms.extend(get_geoms(self.geometries.multipolygons, 3857))

        for geom in tgeoms:
            s1, s2 = cPickle.dumps(geom), pickle.dumps(geom)
            g1, g2 = cPickle.loads(s1), pickle.loads(s2)
            for tmpg in (g1, g2):
                self.assertEqual(geom, tmpg)
                self.assertEqual(geom.srid, tmpg.srid)

    def test_prepared(self):
        "Testing PreparedGeometry support."
        # Creating a simple multipolygon and getting a prepared version.
        mpoly = GEOSGeometry('MULTIPOLYGON(((0 0,0 5,5 5,5 0,0 0)),((5 5,5 10,10 10,10 5,5 5)))')
        prep = mpoly.prepared

        # A set of test points.
        pnts = [Point(5, 5), Point(7.5, 7.5), Point(2.5, 7.5)]
        covers = [True, True, False]  # No `covers` op for regular GEOS geoms.
        for pnt, c in zip(pnts, covers):
            # Results should be the same (but faster)
            self.assertEqual(mpoly.contains(pnt), prep.contains(pnt))
            self.assertEqual(mpoly.intersects(pnt), prep.intersects(pnt))
            self.assertEqual(c, prep.covers(pnt))

        self.assertTrue(prep.crosses(fromstr('LINESTRING(1 1, 15 15)')))
        self.assertTrue(prep.disjoint(Point(-5, -5)))
        poly = Polygon(((-1, -1), (1, 1), (1, 0), (-1, -1)))
        self.assertTrue(prep.overlaps(poly))
        poly = Polygon(((-5, 0), (-5, 5), (0, 5), (-5, 0)))
        self.assertTrue(prep.touches(poly))
        poly = Polygon(((-1, -1), (-1, 11), (11, 11), (11, -1), (-1, -1)))
        self.assertTrue(prep.within(poly))

        # Original geometry deletion should not crash the prepared one (#21662)
        del mpoly
        self.assertTrue(prep.covers(Point(5, 5)))

    def test_line_merge(self):
        "Testing line merge support"
        ref_geoms = (fromstr('LINESTRING(1 1, 1 1, 3 3)'),
                     fromstr('MULTILINESTRING((1 1, 3 3), (3 3, 4 2))'),
                     )
        ref_merged = (fromstr('LINESTRING(1 1, 3 3)'),
                      fromstr('LINESTRING (1 1, 3 3, 4 2)'),
                      )
        for geom, merged in zip(ref_geoms, ref_merged):
            self.assertEqual(merged, geom.merged)

    def test_valid_reason(self):
        "Testing IsValidReason support"

        g = GEOSGeometry("POINT(0 0)")
        self.assertTrue(g.valid)
        self.assertIsInstance(g.valid_reason, six.string_types)
        self.assertEqual(g.valid_reason, "Valid Geometry")

        g = GEOSGeometry("LINESTRING(0 0, 0 0)")

        self.assertFalse(g.valid)
        self.assertIsInstance(g.valid_reason, six.string_types)
        self.assertTrue(g.valid_reason.startswith("Too few points in geometry component"))

    @skipUnless(HAS_GEOS, "Geos is required.")
    def test_linearref(self):
        "Testing linear referencing"

        ls = fromstr('LINESTRING(0 0, 0 10, 10 10, 10 0)')
        mls = fromstr('MULTILINESTRING((0 0, 0 10), (10 0, 10 10))')

        self.assertEqual(ls.project(Point(0, 20)), 10.0)
        self.assertEqual(ls.project(Point(7, 6)), 24)
        self.assertEqual(ls.project_normalized(Point(0, 20)), 1.0 / 3)

        self.assertEqual(ls.interpolate(10), Point(0, 10))
        self.assertEqual(ls.interpolate(24), Point(10, 6))
        self.assertEqual(ls.interpolate_normalized(1.0 / 3), Point(0, 10))

        self.assertEqual(mls.project(Point(0, 20)), 10)
        self.assertEqual(mls.project(Point(7, 6)), 16)

        self.assertEqual(mls.interpolate(9), Point(0, 9))
        self.assertEqual(mls.interpolate(17), Point(10, 7))

    def test_geos_version(self):
        """Testing the GEOS version regular expression."""
        from django.contrib.gis.geos.libgeos import version_regex
        versions = [('3.0.0rc4-CAPI-1.3.3', '3.0.0', '1.3.3'),
                    ('3.0.0-CAPI-1.4.1', '3.0.0', '1.4.1'),
                    ('3.4.0dev-CAPI-1.8.0', '3.4.0', '1.8.0'),
                    ('3.4.0dev-CAPI-1.8.0 r0', '3.4.0', '1.8.0')]
        for v_init, v_geos, v_capi in versions:
            m = version_regex.match(v_init)
            self.assertTrue(m, msg="Unable to parse the version string '%s'" % v_init)
            self.assertEqual(m.group('version'), v_geos)
            self.assertEqual(m.group('capi_version'), v_capi)