Arthur de Jong

Open Source / Free Software developer

summaryrefslogtreecommitdiffstats
path: root/docs/ref/contrib/gis/gdal.txt
blob: 2f3cb9f3d996e0d43af26ea92fcb79a4637fb7ec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
========
GDAL API
========

.. module:: django.contrib.gis.gdal
   :synopsis: GeoDjango's high-level interface to the GDAL library.

`GDAL`__ stands for **Geospatial Data Abstraction Library**,
and is a veritable "Swiss army knife" of GIS data functionality.  A subset
of GDAL is the `OGR`__ Simple Features Library, which specializes
in reading and writing vector geographic data in a variety of standard
formats.

GeoDjango provides a high-level Python interface for some of the
capabilities of OGR, including the reading and coordinate transformation
of vector spatial data and minimal support for GDAL's features with respect
to raster (image) data.

.. note::

     Although the module is named ``gdal``, GeoDjango only supports
     some of the capabilities of OGR and GDAL's raster features at this time.

__ http://www.gdal.org/
__ http://www.gdal.org/ogr_arch.html

Overview
========

.. _gdal_sample_data:

Sample Data
-----------

The GDAL/OGR tools described here are designed to help you read in
your geospatial data, in order for most of them to be useful you have
to have some data to work with.  If you're starting out and don't yet
have any data of your own to use, GeoDjango tests contain a number of
simple data sets that you can use for testing. You can download them here::

    $ wget https://raw.githubusercontent.com/django/django/master/tests/gis_tests/data/cities/cities.{shp,prj,shx,dbf}
    $ wget https://raw.githubusercontent.com/django/django/master/tests/gis_tests/data/rasters/raster.tif

Vector Data Source Objects
==========================

``DataSource``
--------------

:class:`DataSource` is a wrapper for the OGR data source object that
supports reading data from a variety of OGR-supported geospatial file
formats and data sources using a simple, consistent interface.  Each
data source is represented by a :class:`DataSource` object which contains
one or more layers of data.  Each layer, represented by a :class:`Layer`
object, contains some number of geographic features (:class:`Feature`),
information about the type of features contained in that layer (e.g.
points, polygons, etc.), as well as the names and types of any
additional fields (:class:`Field`) of data that may be associated with
each feature in that layer.

.. class:: DataSource(ds_input, encoding='utf-8')

   The constructor for ``DataSource`` only requires one parameter: the path of
   the file you want to read. However, OGR
   also supports a variety of more complex data sources, including
   databases, that may be accessed by passing a special name string instead
   of a path.  For more information, see the `OGR Vector Formats`__
   documentation.  The :attr:`name` property of a ``DataSource``
   instance gives the OGR name of the underlying data source that it is
   using.

   The optional ``encoding`` parameter allows you to
   specify a non-standard encoding of the strings in the source. This is
   typically useful when you obtain ``DjangoUnicodeDecodeError`` exceptions
   while reading field values.

   Once you've created your ``DataSource``, you can find out how many
   layers of data it contains by accessing the :attr:`layer_count` property,
   or (equivalently) by using the ``len()`` function.  For information on
   accessing the layers of data themselves, see the next section::

       >>> from django.contrib.gis.gdal import DataSource
       >>> ds = DataSource('/path/to/your/cities.shp')
       >>> ds.name
       '/path/to/your/cities.shp'
       >>> ds.layer_count                  # This file only contains one layer
       1

   .. attribute:: layer_count

   Returns the number of layers in the data source.

   .. attribute:: name

   Returns the name of the data source.

__ http://www.gdal.org/ogr_formats.html

``Layer``
---------

.. class:: Layer

   ``Layer`` is a wrapper for a layer of data in a ``DataSource`` object.
   You never create a ``Layer`` object directly.  Instead, you retrieve
   them from a :class:`DataSource` object, which is essentially a standard
   Python container of ``Layer`` objects.  For example, you can access a
   specific layer by its index (e.g. ``ds[0]`` to access the first
   layer), or you can iterate over all the layers in the container in a
   ``for`` loop.  The ``Layer`` itself acts as a container for geometric
   features.

   Typically, all the features in a given layer have the same geometry type.
   The :attr:`geom_type` property of a layer is an :class:`OGRGeomType`
   that identifies the feature type.  We can use it to print out some basic
   information about each layer in a :class:`DataSource`::

       >>> for layer in ds:
       ...     print('Layer "%s": %i %ss' % (layer.name, len(layer), layer.geom_type.name))
       ...
       Layer "cities": 3 Points

   The example output is from the cities data source, loaded above, which
   evidently contains one layer, called ``"cities"``, which contains three
   point features.  For simplicity, the examples below assume that you've
   stored that layer in the variable ``layer``::

       >>> layer = ds[0]

   .. attribute:: name

   Returns the name of this layer in the data source.

       >>> layer.name
       'cities'

   .. attribute:: num_feat

   Returns the number of features in the layer.  Same as ``len(layer)``::

       >>> layer.num_feat
       3

   .. attribute:: geom_type

   Returns the geometry type of the layer, as an :class:`OGRGeomType`
   object::

       >>> layer.geom_type.name
       'Point'

   .. attribute:: num_fields

   Returns the number of fields in the layer, i.e the number of fields of
   data associated with each feature in the layer::

       >>> layer.num_fields
       4

   .. attribute:: fields

   Returns a list of the names of each of the fields in this layer::

       >>> layer.fields
       ['Name', 'Population', 'Density', 'Created']

   .. attribute field_types

   Returns a list of the data types of each of the fields in this layer.
   These are subclasses of ``Field``, discussed below::

       >>> [ft.__name__ for ft in layer.field_types]
       ['OFTString', 'OFTReal', 'OFTReal', 'OFTDate']

   .. attribute:: field_widths

   Returns a list of the maximum field widths for each of the fields in
   this layer::

      >>> layer.field_widths
      [80, 11, 24, 10]

   .. attribute:: field_precisions

   Returns a list of the numeric precisions for each of the fields in
   this layer.  This is meaningless (and set to zero) for non-numeric
   fields::

       >>> layer.field_precisions
       [0, 0, 15, 0]

   .. attribute:: extent

   Returns the spatial extent of this layer, as an :class:`Envelope`
   object::

      >>> layer.extent.tuple
      (-104.609252, 29.763374, -95.23506, 38.971823)

   .. attribute:: srs

   Property that returns the :class:`SpatialReference` associated
   with this layer::

       >>> print(layer.srs)
       GEOGCS["GCS_WGS_1984",
           DATUM["WGS_1984",
               SPHEROID["WGS_1984",6378137,298.257223563]],
           PRIMEM["Greenwich",0],
           UNIT["Degree",0.017453292519943295]]

   If the :class:`Layer` has no spatial reference information associated
   with it, ``None`` is returned.

   .. attribute:: spatial_filter

   Property that may be used to retrieve or set a spatial filter for this
   layer.  A spatial filter can only be set with an :class:`OGRGeometry`
   instance, a 4-tuple extent, or ``None``.  When set with something
   other than ``None``, only features that intersect the filter will be
   returned when iterating over the layer::

       >>> print(layer.spatial_filter)
       None
       >>> print(len(layer))
       3
       >>> [feat.get('Name') for feat in layer]
       ['Pueblo', 'Lawrence', 'Houston']
       >>> ks_extent = (-102.051, 36.99, -94.59, 40.00) # Extent for state of Kansas
       >>> layer.spatial_filter = ks_extent
       >>> len(layer)
       1
       >>> [feat.get('Name') for feat in layer]
       ['Lawrence']
       >>> layer.spatial_filter = None
       >>> len(layer)
       3

   .. method:: get_fields()

   A method that returns a list of the values of a given field for each
   feature in the layer::

      >>> layer.get_fields('Name')
      ['Pueblo', 'Lawrence', 'Houston']

   .. method:: get_geoms(geos=False)

   A method that returns a list containing the geometry of each feature
   in the layer.  If the optional argument ``geos`` is set to ``True``
   then the geometries are converted to :class:`~django.contrib.gis.geos.GEOSGeometry`
   objects. Otherwise, they are returned as :class:`OGRGeometry` objects::

       >>> [pt.tuple for pt in layer.get_geoms()]
       [(-104.609252, 38.255001), (-95.23506, 38.971823), (-95.363151, 29.763374)]

   .. method:: test_capability(capability)

   Returns a boolean indicating whether this layer supports the
   given capability (a string).  Examples of valid capability strings
   include: ``'RandomRead'``, ``'SequentialWrite'``, ``'RandomWrite'``,
   ``'FastSpatialFilter'``, ``'FastFeatureCount'``, ``'FastGetExtent'``,
   ``'CreateField'``, ``'Transactions'``, ``'DeleteFeature'``, and
   ``'FastSetNextByIndex'``.

``Feature``
-----------

.. class:: Feature


   ``Feature`` wraps an OGR feature.  You never create a ``Feature``
   object directly.  Instead, you retrieve them from a :class:`Layer` object.
   Each feature consists of a geometry and a set of fields containing
   additional properties.  The geometry of a field is accessible via its
   ``geom`` property, which returns an :class:`OGRGeometry` object.  A ``Feature``
   behaves like a standard Python container for its fields, which it returns as
   :class:`Field` objects: you can access a field directly by its index or name,
   or you can iterate over a feature's fields, e.g. in a ``for`` loop.

   .. attribute:: geom

   Returns the geometry for this feature, as an ``OGRGeometry`` object::

       >>> city.geom.tuple
       (-104.609252, 38.255001)

   .. attribute:: get

   A method that returns the value of the given field (specified by name)
   for this feature, **not** a ``Field`` wrapper object::

       >>> city.get('Population')
       102121

   .. attribute:: geom_type

   Returns the type of geometry for this feature, as an :class:`OGRGeomType`
   object.  This will be the same for all features in a given layer, and
   is equivalent to the :attr:`Layer.geom_type` property of the
   :class:`Layer` object the feature came from.

   .. attribute:: num_fields

   Returns the number of fields of data associated with the feature.
   This will be the same for all features in a given layer, and is
   equivalent to the :attr:`Layer.num_fields` property of the
   :class:`Layer` object the feature came from.

   .. attribute:: fields

   Returns a list of the names of the fields of data associated with the
   feature.  This will be the same for all features in a given layer, and
   is equivalent to the :attr:`Layer.fields` property of the :class:`Layer`
   object the feature came from.

   .. attribute:: fid

   Returns the feature identifier within the layer::

       >>> city.fid
       0

   .. attribute:: layer_name

   Returns the name of the :class:`Layer` that the feature came from.
   This will be the same for all features in a given layer::

       >>> city.layer_name
       'cities'

   .. attribute:: index

   A method that returns the index of the given field name.  This will be
   the same for all features in a given layer::

       >>> city.index('Population')
       1

``Field``
---------

.. class:: Field

   .. attribute:: name

   Returns the name of this field::

       >>> city['Name'].name
       'Name'

   .. attribute:: type

   Returns the OGR type of this field, as an integer.  The
   ``FIELD_CLASSES`` dictionary maps these values onto
   subclasses of ``Field``::

       >>> city['Density'].type
       2

   .. attribute:: type_name

   Returns a string with the name of the data type of this field::

       >>> city['Name'].type_name
       'String'

   .. attribute:: value

   Returns the value of this field.  The ``Field`` class itself
   returns the value as a string, but each subclass returns the
   value in the most appropriate form::

       >>> city['Population'].value
       102121

   .. attribute:: width

   Returns the width of this field::

       >>> city['Name'].width
       80

   .. attribute:: precision

   Returns the numeric precision of this field.  This is meaningless (and
   set to zero) for non-numeric fields::

       >>> city['Density'].precision
       15

   .. method:: as_double()

   Returns the value of the field as a double (float)::

       >>> city['Density'].as_double()
       874.7

   .. method:: as_int()

   Returns the value of the field as an integer::

       >>> city['Population'].as_int()
       102121

   .. method:: as_string()

   Returns the value of the field as a string::

       >>> city['Name'].as_string()
       'Pueblo'

   .. method:: as_datetime()

   Returns the value of the field as a tuple of date and time components::

       >>> city['Created'].as_datetime()
       (c_long(1999), c_long(5), c_long(23), c_long(0), c_long(0), c_long(0), c_long(0))

``Driver``
----------

.. class:: Driver(dr_input)

   The ``Driver`` class is used internally to wrap an OGR :class:`DataSource` driver.

   .. attribute:: driver_count

   Returns the number of OGR vector drivers currently registered.


OGR Geometries
==============

``OGRGeometry``
---------------

:class:`OGRGeometry` objects share similar functionality with
:class:`~django.contrib.gis.geos.GEOSGeometry` objects, and are thin
wrappers around OGR's internal geometry representation.  Thus,
they allow for more efficient access to data when using :class:`DataSource`.
Unlike its GEOS counterpart, :class:`OGRGeometry` supports spatial reference
systems and coordinate transformation::

    >>> from django.contrib.gis.gdal import OGRGeometry
    >>> polygon = OGRGeometry('POLYGON((0 0, 5 0, 5 5, 0 5))')

.. class:: OGRGeometry(geom_input, srs=None)

   This object is a wrapper for the `OGR Geometry`__ class.
   These objects are instantiated directly from the given ``geom_input``
   parameter, which may be a string containing WKT, HEX, GeoJSON, a ``buffer``
   containing WKB data, or an :class:`OGRGeomType` object. These objects
   are also returned from the :class:`Feature.geom` attribute, when
   reading vector data from :class:`Layer` (which is in turn a part of
   a :class:`DataSource`).

   __ http://www.gdal.org/classOGRGeometry.html

   .. classmethod:: from_bbox(bbox)

   Constructs a :class:`Polygon` from the given bounding-box (a 4-tuple).

   .. method:: __len__()

   Returns the number of points in a :class:`LineString`, the
   number of rings in a :class:`Polygon`, or the number of geometries in a
   :class:`GeometryCollection`. Not applicable to other geometry types.

   .. method:: __iter__()

   Iterates over the points in a :class:`LineString`, the rings in a
   :class:`Polygon`, or the geometries in a :class:`GeometryCollection`.
   Not applicable to other geometry types.

   .. method:: __getitem__()

   Returns the point at the specified index for a :class:`LineString`, the
   interior ring at the specified index for a :class:`Polygon`, or the geometry
   at the specified index in a :class:`GeometryCollection`.  Not applicable to
   other geometry types.

   .. attribute:: dimension

   Returns the number of coordinated dimensions of the geometry, i.e. 0
   for points, 1 for lines, and so forth::

       >> polygon.dimension
       2

   .. attribute:: coord_dim

   Returns or sets the coordinate dimension of this geometry.  For
   example, the value would be 2 for two-dimensional geometries.

   .. attribute:: geom_count

   Returns the number of elements in this geometry::

       >>> polygon.geom_count
       1

   .. attribute:: point_count

   Returns the number of points used to describe this geometry::

      >>> polygon.point_count
      4

   .. attribute:: num_points

   Alias for :attr:`point_count`.

   .. attribute:: num_coords

   Alias for :attr:`point_count`.

   .. attribute:: geom_type

   Returns the type of this geometry, as an :class:`OGRGeomType` object.

   .. attribute:: geom_name

   Returns the name of the type of this geometry::

       >>> polygon.geom_name
       'POLYGON'

   .. attribute:: area

   Returns the area of this geometry, or 0 for geometries that do not
   contain an area::

       >>> polygon.area
       25.0

   .. attribute:: envelope

   Returns the envelope of this geometry, as an :class:`Envelope` object.

   .. attribute:: extent

   Returns the envelope of this geometry as a 4-tuple, instead of as an
   :class:`Envelope` object::

       >>> point.extent
       (0.0, 0.0, 5.0, 5.0)

   .. attribute:: srs

   This property controls the spatial reference for this geometry, or
   ``None`` if no spatial reference system has been assigned to it.
   If assigned, accessing this property returns a :class:`SpatialReference`
   object.  It may be set with another :class:`SpatialReference` object,
   or any input that :class:`SpatialReference` accepts. Example::

       >>> city.geom.srs.name
       'GCS_WGS_1984'

   .. attribute:: srid

   Returns or sets the spatial reference identifier corresponding to
   :class:`SpatialReference` of this geometry.  Returns ``None`` if
   there is no spatial reference information associated with this
   geometry, or if an SRID cannot be determined.

   .. attribute:: geos

   Returns a :class:`~django.contrib.gis.geos.GEOSGeometry` object
   corresponding to this geometry.

   .. attribute:: gml

   Returns a string representation of this geometry in GML format::

       >>> OGRGeometry('POINT(1 2)').gml
       '<gml:Point><gml:coordinates>1,2</gml:coordinates></gml:Point>'

   .. attribute:: hex

   Returns a string representation of this geometry in HEX WKB format::

       >>> OGRGeometry('POINT(1 2)').hex
       '0101000000000000000000F03F0000000000000040'

   .. attribute:: json

   Returns a string representation of this geometry in JSON format::

       >>> OGRGeometry('POINT(1 2)').json
       '{ "type": "Point", "coordinates": [ 1.000000, 2.000000 ] }'


   .. attribute:: kml

   Returns a string representation of this geometry in KML format.

   .. attribute:: wkb_size

   Returns the size of the WKB buffer needed to hold a WKB representation
   of this geometry::

       >>> OGRGeometry('POINT(1 2)').wkb_size
       21

   .. attribute:: wkb

   Returns a ``buffer`` containing a WKB representation of this geometry.

   .. attribute:: wkt

   Returns a string representation of this geometry in WKT format.

   .. attribute:: ewkt

   Returns the EWKT representation of this geometry.

   .. method:: clone()

   Returns a new :class:`OGRGeometry` clone of this geometry object.

   .. method:: close_rings()

   If there are any rings within this geometry that have not been closed,
   this routine will do so by adding the starting point to the end::

       >>> triangle = OGRGeometry('LINEARRING (0 0,0 1,1 0)')
       >>> triangle.close_rings()
       >>> triangle.wkt
       'LINEARRING (0 0,0 1,1 0,0 0)'

   .. method:: transform(coord_trans, clone=False)

   Transforms this geometry to a different spatial reference system.  May
   take a :class:`CoordTransform` object, a :class:`SpatialReference` object,
   or any other input accepted by :class:`SpatialReference` (including
   spatial reference WKT and PROJ.4 strings, or an integer SRID).
   By default nothing is returned and the geometry is transformed in-place.
   However, if the ``clone`` keyword is set to ``True`` then a transformed
   clone of this geometry is returned instead.

   .. method:: intersects(other)

   Returns ``True`` if this geometry intersects the other, otherwise returns
   ``False``.

   .. method:: equals(other)

   Returns ``True`` if this geometry is equivalent to the other, otherwise returns
   ``False``.

   .. method:: disjoint(other)

   Returns ``True`` if this geometry is spatially disjoint to (i.e. does
   not intersect) the other, otherwise returns ``False``.

   .. method:: touches(other)

   Returns ``True`` if this geometry touches the other, otherwise returns
   ``False``.

   .. method:: crosses(other)

   Returns ``True`` if this geometry crosses the other, otherwise returns
   ``False``.

   .. method:: within(other)

   Returns ``True`` if this geometry is contained within the other, otherwise returns
   ``False``.

   .. method:: contains(other)

   Returns ``True`` if this geometry contains the other, otherwise returns
   ``False``.

   .. method:: overlaps(other)

   Returns ``True`` if this geometry overlaps the other, otherwise returns
   ``False``.

   .. method:: boundary()

   The boundary of this geometry, as a new :class:`OGRGeometry` object.

   .. attribute:: convex_hull

   The smallest convex polygon that contains this geometry, as a new
   :class:`OGRGeometry` object.

   .. method:: difference()

   Returns the region consisting of the difference of this geometry and
   the other, as a new :class:`OGRGeometry` object.

   .. method:: intersection()

   Returns the region consisting of the intersection of this geometry and
   the other, as a new :class:`OGRGeometry` object.

   .. method:: sym_difference()

   Returns the region consisting of the symmetric difference of this
   geometry and the other, as a new :class:`OGRGeometry` object.

   .. method:: union()

   Returns the region consisting of the union of this geometry and
   the other, as a new :class:`OGRGeometry` object.

   .. attribute:: tuple

   Returns the coordinates of a point geometry as a tuple, the
   coordinates of a line geometry as a tuple of tuples, and so forth::

       >>> OGRGeometry('POINT (1 2)').tuple
       (1.0, 2.0)
       >>> OGRGeometry('LINESTRING (1 2,3 4)').tuple
       ((1.0, 2.0), (3.0, 4.0))

   .. attribute:: coords

   An alias for :attr:`tuple`.

.. class:: Point

   .. attribute:: x

   Returns the X coordinate of this point::

       >>> OGRGeometry('POINT (1 2)').x
       1.0

   .. attribute:: y

   Returns the Y coordinate of this point::

       >>> OGRGeometry('POINT (1 2)').y
       2.0

   .. attribute:: z

   Returns the Z coordinate of this point, or ``None`` if the
   point does not have a Z coordinate::

       >>> OGRGeometry('POINT (1 2 3)').z
       3.0

.. class:: LineString

   .. attribute:: x

   Returns a list of X coordinates in this line::

       >>> OGRGeometry('LINESTRING (1 2,3 4)').x
       [1.0, 3.0]

   .. attribute:: y

   Returns a list of Y coordinates in this line::

       >>> OGRGeometry('LINESTRING (1 2,3 4)').y
       [2.0, 4.0]

   .. attribute:: z

   Returns a list of Z coordinates in this line, or ``None`` if the
   line does not have Z coordinates::

       >>> OGRGeometry('LINESTRING (1 2 3,4 5 6)').z
       [3.0, 6.0]


.. class:: Polygon

   .. attribute:: shell

   Returns the shell or exterior ring of this polygon, as a ``LinearRing``
   geometry.

   .. attribute:: exterior_ring

   An alias for :attr:`shell`.

   .. attribute:: centroid

   Returns a :class:`Point` representing the centroid of this polygon.

.. class:: GeometryCollection

   .. method:: add(geom)

   Adds a geometry to this geometry collection.  Not applicable to other
   geometry types.


``OGRGeomType``
---------------

.. class:: OGRGeomType(type_input)

   This class allows for the representation of an OGR geometry type
   in any of several ways::

       >>> from django.contrib.gis.gdal import OGRGeomType
       >>> gt1 = OGRGeomType(3)             # Using an integer for the type
       >>> gt2 = OGRGeomType('Polygon')     # Using a string
       >>> gt3 = OGRGeomType('POLYGON')     # It's case-insensitive
       >>> print(gt1 == 3, gt1 == 'Polygon') # Equivalence works w/non-OGRGeomType objects
       True True

   .. attribute:: name

   Returns a short-hand string form of the OGR Geometry type::

       >>> gt1.name
       'Polygon'

   .. attribute:: num

   Returns the number corresponding to the OGR geometry type::

       >>> gt1.num
       3

   .. attribute:: django

   Returns the Django field type (a subclass of GeometryField) to use for
   storing this OGR type, or ``None`` if there is no appropriate Django
   type::

       >>> gt1.django
       'PolygonField'

``Envelope``
------------

.. class:: Envelope(*args)

   Represents an OGR Envelope structure that contains the
   minimum and maximum X, Y coordinates for a rectangle bounding box.
   The naming of the variables is compatible with the OGR Envelope
   C structure.

   .. attribute:: min_x

   The value of the minimum X coordinate.

   .. attribute:: min_y

   The value of the maximum X coordinate.

   .. attribute:: max_x

   The value of the minimum Y coordinate.

   .. attribute:: max_y

   The value of the maximum Y coordinate.

   .. attribute:: ur

   The upper-right coordinate, as a tuple.

   .. attribute:: ll

   The lower-left coordinate, as a tuple.

   .. attribute:: tuple

   A tuple representing the envelope.

   .. attribute:: wkt

   A string representing this envelope as a polygon in WKT format.


   .. method:: expand_to_include(*args)

Coordinate System Objects
=========================

``SpatialReference``
--------------------

.. class:: SpatialReference(srs_input)

   Spatial reference objects are initialized on the given ``srs_input``,
   which may be one of the following:

   * OGC Well Known Text (WKT) (a string)
   * EPSG code (integer or string)
   * PROJ.4 string
   * A shorthand string for well-known standards (``'WGS84'``, ``'WGS72'``, ``'NAD27'``, ``'NAD83'``)

   Example::

       >>> wgs84 = SpatialReference('WGS84') # shorthand string
       >>> wgs84 = SpatialReference(4326) # EPSG code
       >>> wgs84 = SpatialReference('EPSG:4326') # EPSG string
       >>> proj4 = '+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs '
       >>> wgs84 = SpatialReference(proj4) # PROJ.4 string
       >>> wgs84 = SpatialReference("""GEOGCS["WGS 84",
       DATUM["WGS_1984",
            SPHEROID["WGS 84",6378137,298.257223563,
                AUTHORITY["EPSG","7030"]],
            AUTHORITY["EPSG","6326"]],
        PRIMEM["Greenwich",0,
            AUTHORITY["EPSG","8901"]],
        UNIT["degree",0.01745329251994328,
            AUTHORITY["EPSG","9122"]],
        AUTHORITY["EPSG","4326"]]""") # OGC WKT

   .. method:: __getitem__(target)

   Returns the value of the given string attribute node, ``None`` if the node
   doesn't exist.  Can also take a tuple as a parameter, (target, child),
   where child is the index of the attribute in the WKT.  For example::

       >>> wkt = 'GEOGCS["WGS 84", DATUM["WGS_1984, ... AUTHORITY["EPSG","4326"]]')
       >>> srs = SpatialReference(wkt) # could also use 'WGS84', or 4326
       >>> print(srs['GEOGCS'])
       WGS 84
       >>> print(srs['DATUM'])
       WGS_1984
       >>> print(srs['AUTHORITY'])
       EPSG
       >>> print(srs['AUTHORITY', 1]) # The authority value
       4326
       >>> print(srs['TOWGS84', 4]) # the fourth value in this wkt
       0
       >>> print(srs['UNIT|AUTHORITY']) # For the units authority, have to use the pipe symbol.
       EPSG
       >>> print(srs['UNIT|AUTHORITY', 1]) # The authority value for the units
       9122

   .. method:: attr_value(target, index=0)

   The attribute value for the given target node (e.g. ``'PROJCS'``).
   The index keyword specifies an index of the child node to return.

   .. method:: auth_name(target)

   Returns the authority name for the given string target node.

   .. method:: auth_code(target)

   Returns the authority code for the given string target node.

   .. method:: clone()

   Returns a clone of this spatial reference object.

   .. method:: identify_epsg()

   This method inspects the WKT of this SpatialReference, and will
   add EPSG authority nodes where an EPSG identifier is applicable.

   .. method:: from_esri()

   Morphs this SpatialReference from ESRI's format to EPSG

   .. method:: to_esri()

   Morphs this SpatialReference to ESRI's format.

   .. method:: validate()

   Checks to see if the given spatial reference is valid, if not
   an exception will be raised.

   .. method:: import_epsg(epsg)

   Import spatial reference from EPSG code.

   .. method:: import_proj(proj)

   Import spatial reference from PROJ.4 string.

   .. method:: import_user_input(user_input)

   .. method:: import_wkt(wkt)

   Import spatial reference from WKT.

   .. method:: import_xml(xml)

   Import spatial reference from XML.

   .. attribute:: name

   Returns the name of this Spatial Reference.

   .. attribute:: srid

   Returns the SRID of top-level authority, or ``None`` if undefined.

   .. attribute:: linear_name

   Returns the name of the linear units.

   .. attribute:: linear_units

   Returns the value of the linear units.

   .. attribute:: angular_name

   Returns the name of the angular units."

   .. attribute:: angular_units

   Returns the value of the angular units.

   .. attribute:: units

   Returns a 2-tuple of the units value and the units name,
   and will automatically determines whether to return the linear
   or angular units.

   .. attribute:: ellipsoid

   Returns a tuple of the ellipsoid parameters for this spatial
   reference: (semimajor axis, semiminor axis, and inverse flattening)

   .. attribute:: semi_major

   Returns the semi major axis of the ellipsoid for this spatial reference.

   .. attribute:: semi_minor

   Returns the semi minor axis of the ellipsoid for this spatial reference.

   .. attribute:: inverse_flattening

   Returns the inverse flattening of the ellipsoid for this spatial reference.

   .. attribute:: geographic

   Returns ``True`` if this spatial reference is geographic
   (root node is ``GEOGCS``).

   .. attribute:: local

   Returns ``True`` if this spatial reference is local
   (root node is ``LOCAL_CS``).

   .. attribute:: projected

   Returns ``True`` if this spatial reference is a projected coordinate
   system (root node is ``PROJCS``).

   .. attribute:: wkt

   Returns the WKT representation of this spatial reference.

   .. attribute:: pretty_wkt

   Returns the 'pretty' representation of the WKT.

   .. attribute:: proj

   Returns the PROJ.4 representation for this spatial reference.

   .. attribute:: proj4

   Alias for :attr:`SpatialReference.proj`.

   .. attribute:: xml

   Returns the XML representation of this spatial reference.


``CoordTransform``
------------------

.. class:: CoordTransform(source, target)

Represents a coordinate system transform.  It is initialized with two
:class:`SpatialReference`, representing the source and target coordinate
systems, respectively.  These objects should be used when performing
the same coordinate transformation repeatedly on different geometries::

    >>> ct = CoordTransform(SpatialReference('WGS84'), SpatialReference('NAD83'))
    >>> for feat in layer:
    ...     geom = feat.geom # getting clone of feature geometry
    ...     geom.transform(ct) # transforming

.. _raster-data-source-objects:

Raster Data Objects
===================

``GDALRaster``
----------------

:class:`GDALRaster` is a wrapper for the GDAL raster source object that
supports reading data from a variety of GDAL-supported geospatial file
formats and data sources using a simple, consistent interface.  Each
data source is represented by a :class:`GDALRaster` object which contains
one or more layers of data named bands.  Each band, represented by a
:class:`GDALBand` object, contains georeferenced image data. For example, an RGB
image is represented as three bands: one for red, one for green, and one for
blue.

.. note::

    For raster data there is no difference between a raster instance and its
    data source. Unlike for the Geometry objects, :class:`GDALRaster` objects are
    always a data source. Temporary rasters can be instantiated in memory
    using the corresponding driver, but they will be of the same class as file-based
    raster sources.

.. class:: GDALRaster(ds_input, write=False)

    The constructor for ``GDALRaster`` accepts two parameters. The first parameter
    defines the raster source, it is either a path to a file or spatial data with
    values defining the properties of a new raster (such as size and name). If the
    input is a file path, the second parameter specifies if the raster should
    be opened with write access. If the input is raw data, the parameters ``width``,
    ``height``, and ``srid`` are required. The following example shows how rasters
    can be created from different input sources (using the sample data from the
    GeoDjango tests, see also the :ref:`gdal_sample_data` section)::

        >>> from django.contrib.gis.gdal import GDALRaster
        >>> rst = GDALRaster('/path/to/your/raster.tif', write=False)
        >>> rst.name
        '/path/to/your/raster.tif'
        >>> rst.width, rst.height            # This file has 163 x 174 pixels
        (163, 174)
        >>> rst = GDALRaster({'srid': 4326, 'width': 1, 'height': 2, 'datatype': 1
        ...                   'bands': [{'data': [0, 1]}]}) # Creates in-memory raster
        >>> rst.srs.srid
        4326
        >>> rst.width, rst.height
        (1, 2)
        >>> rst.bands[0].data()
        array([[0, 1]], dtype=int8)

    .. versionchanged:: 1.9

        ``GDALRaster`` objects can now be instantiated directly from raw data.
        Setters have been added for the following properties: ``srs``,
        ``geotransform``, ``origin``, ``scale``, and ``skew``.

    .. attribute:: name

        The name of the source which is equivalent to the input file path or the name
        provided upon instantiation.

            >>> GDALRaster({'width': 10, 'height': 10, 'name': 'myraster', 'srid': 4326}).name
            'myraster'

    .. attribute:: driver

        The name of the GDAL driver used to handle the input file. For ``GDALRaster``\s created
        from a file, the driver type is detected automatically. The creation of rasters from
        scratch is a in-memory raster by default (``'MEM'``), but can be altered as
        needed. For instance, use ``GTiff`` for a ``GeoTiff`` file. For a list of file types,
        see also the `GDAL Raster Formats`__ list.

        __ http://www.gdal.org/formats_list.html

        An in-memory raster is created through the following example:

            >>> GDALRaster({'width': 10, 'height': 10, 'srid': 4326}).driver.name
            'MEM'

        A file based GeoTiff raster is created through the following example:

            >>> import tempfile
            >>> rstfile = tempfile.NamedTemporaryFile(suffix='.tif')
            >>> rst = GDALRaster({'driver': 'GTiff', 'name': rstfile.name, 'srid': 4326,
            ...                   'width': 255, 'height': 255, 'nr_of_bands': 1})
            >>> rst.name
            '/tmp/tmp7x9H4J.tif'           # The exact filename will be different on your computer
            >>> rst.driver.name
            'GTiff'

    .. attribute:: width

        The width of the source in pixels (X-axis).

            >>> GDALRaster({'width': 10, 'height': 20, 'srid': 4326}).width
            10

    .. attribute:: height

        The height of the source in pixels (Y-axis).

            >>> GDALRaster({'width': 10, 'height': 20, 'srid': 4326}).height
            20

    .. attribute:: srs

        The spatial reference system of the raster, as a
        :class:`SpatialReference` instance. The SRS can be changed by
        setting it to an other :class:`SpatialReference` or providing any input
        that is accepted by the :class:`SpatialReference` constructor.

            >>> rst = GDALRaster({'width': 10, 'height': 20, 'srid': 4326})
            >>> rst.srs.srid
            4326
            >>> rst.srs = 3086
            >>> rst.srs.srid
            3086

    .. attribute:: srid

        .. versionadded:: 1.10

        The Spatial Reference System Identifier (SRID) of the raster. This
        property is a shortcut to getting or setting the SRID through the
        :attr:`srs` attribute.

            >>> rst = GDALRaster({'width': 10, 'height': 20, 'srid': 4326})
            >>> rst.srid
            4326
            >>> rst.srid = 3086
            >>> rst.srid
            3086
            >>> rst.srs.srid  # This is equivalent
            3086

    .. attribute:: geotransform

        The affine transformation matrix used to georeference the source, as a
        tuple of six coefficients which map pixel/line coordinates into
        georeferenced space using the following relationship::

            Xgeo = GT(0) + Xpixel*GT(1) + Yline*GT(2)
            Ygeo = GT(3) + Xpixel*GT(4) + Yline*GT(5)

        The same values can be retrieved by accessing the :attr:`origin`
        (indices 0 and 3), :attr:`scale` (indices 1 and 5) and :attr:`skew`
        (indices 2 and 4) properties.

        The default is ``[0.0, 1.0, 0.0, 0.0, 0.0, -1.0]``.

            >>> rst = GDALRaster({'width': 10, 'height': 20, 'srid': 4326})
            >>> rst.geotransform
            [0.0, 1.0, 0.0, 0.0, 0.0, -1.0]

    .. attribute:: origin

        Coordinates of the top left origin of the raster in the spatial
        reference system of the source, as a point object with ``x`` and ``y``
        members.

            >>> rst = GDALRaster({'width': 10, 'height': 20, 'srid': 4326})
            >>> rst.origin
            [0.0, 0.0]
            >>> rst.origin.x = 1
            >>> rst.origin
            [1.0, 0.0]

    .. attribute:: scale

        Pixel width and height used for georeferencing the raster, as a as a
        point object with ``x`` and ``y``  members. See :attr:`geotransform`
        for more information.

            >>> rst = GDALRaster({'width': 10, 'height': 20, 'srid': 4326})
            >>> rst.scale
            [1.0, -1.0]
            >>> rst.scale.x = 2
            >>> rst.scale
            [2.0, -1.0]

    .. attribute:: skew

        Skew coefficients used to georeference the raster, as a point object
        with ``x`` and ``y``  members. In case of north up images, these
        coefficients are both ``0``.

            >>> rst = GDALRaster({'width': 10, 'height': 20, 'srid': 4326})
            >>> rst.skew
            [0.0, 0.0]
            >>> rst.skew.x = 3
            >>> rst.skew
            [3.0, 0.0]

    .. attribute:: extent

        Extent (boundary values) of the raster source, as a 4-tuple
        ``(xmin, ymin, xmax, ymax)`` in the spatial reference system of the
        source.

            >>> rst = GDALRaster({'width': 10, 'height': 20, 'srid': 4326})
            >>> rst.extent
            (0.0, -20.0, 10.0, 0.0)
            >>> rst.origin.x = 100
            >>> rst.extent
            (100.0, -20.0, 110.0, 0.0)

    .. attribute:: bands

        List of all bands of the source, as :class:`GDALBand` instances.

            >>> rst = GDALRaster({"width": 1, "height": 2, 'srid': 4326,
            ...                   "bands": [{"data": [0, 1]}, {"data": [2, 3]}]})
            >>> len(rst.bands)
            2
            >>> rst.bands[1].data()
            array([[ 2.,  3.]], dtype=float32)

    .. method:: warp(ds_input, resampling='NearestNeighbour', max_error=0.0)

        .. versionadded:: 1.9

        Returns a warped version of this raster.

        The warping parameters can be specified through the ``ds_input``
        argument. The use of ``ds_input`` is analogous to the corresponding
        argument of the class constructor. It is a dictionary with the
        characteristics of the target raster. Allowed dictionary key values are
        width, height, SRID, origin, scale, skew, datatype, driver, and name
        (filename).

        By default, the warp functions keeps most parameters equal to the
        values of the original source raster, so only parameters that should be
        changed need to be specified. Note that this includes the driver, so
        for file-based rasters the warp function will create a new raster on
        disk.

        The only parameter that is set differently from the source raster is the
        name. The default value of the the raster name is the name of the source
        raster appended with ``'_copy' + source_driver_name``. For file-based
        rasters it is recommended to provide the file path of the target raster.

        The resampling algorithm used for warping can be specified with the
        ``resampling`` argument. The default is ``NearestNeighbor``, and the
        other allowed values are ``Bilinear``, ``Cubic``, ``CubicSpline``,
        ``Lanczos``, ``Average``, and ``Mode``.

        The ``max_error`` argument can be used to specify the maximum error
        measured in input pixels that is allowed in approximating the
        transformation. The default is 0.0 for exact calculations.

        For users familiar with ``GDAL``, this function has a similar
        functionality to the ``gdalwarp`` command-line utility.

        For example, the warp function can be used for aggregating a raster to
        the double of its original pixel scale:

            >>> rst = GDALRaster({
            ...     "width": 6, "height": 6, "srid": 3086,
            ...     "origin": [500000, 400000],
            ...     "scale": [100, -100],
            ...     "bands": [{"data": range(36), "nodata_value": 99}]
            ... })
            >>> target = rst.warp({"scale": [200, -200], "width": 3, "height": 3})
            >>> target.bands[0].data()
            array([[  7.,   9.,  11.],
                   [ 19.,  21.,  23.],
                   [ 31.,  33.,  35.]], dtype=float32)

    .. method:: transform(srid, driver=None, name=None, resampling='NearestNeighbour', max_error=0.0)

        .. versionadded:: 1.9

        Returns a transformed version of this raster with the specified SRID.

        This function transforms the current raster into a new spatial reference
        system that can be specified with an ``srid``. It calculates the bounds
        and scale of the current raster in the new spatial reference system and
        warps the raster using the :attr:`~GDALRaster.warp` function.

        By default, the driver of the source raster is used and the name of the
        raster is the original name appended with
        ``'_copy' + source_driver_name``. A different driver or name can be
        specified with the ``driver`` and ``name`` arguments.

        The default resampling algorithm is ``NearestNeighbour`` but can be
        changed using the ``resampling`` argument. The default maximum allowed
        error for resampling is 0.0 and can be changed using the ``max_error``
        argument. Consult the :attr:`~GDALRaster.warp` documentation for detail
        on those arguments.

            >>> rst = GDALRaster({
            ...     "width": 6, "height": 6, "srid": 3086,
            ...     "origin": [500000, 400000],
            ...     "scale": [100, -100],
            ...     "bands": [{"data": range(36), "nodata_value": 99}]
            ... })
            >>> target = rst.transform(4326)
            >>> target.origin
            [-82.98492744885776, 27.601924753080144]

``GDALBand``
------------

.. class:: GDALBand

    ``GDALBand`` instances are not created explicitly, but rather obtained
    from a :class:`GDALRaster` object, through its :attr:`~GDALRaster.bands`
    attribute. The GDALBands contain the actual pixel values of the raster.

    .. attribute:: description

        The name or description of the band, if any.

    .. attribute:: width

        The width of the band in pixels (X-axis).

    .. attribute:: height

        The height of the band in pixels (Y-axis).

    .. attribute:: pixel_count

        .. versionadded:: 1.9

        The total number of pixels in this band. Is equal to ``width * height``.

    .. attribute:: min

        The minimum pixel value of the band (excluding the "no data" value).

    .. attribute:: max

        The maximum pixel value of the band (excluding the "no data" value).

    .. attribute:: nodata_value

        The "no data" value for a band is generally a special marker value used
        to mark pixels that are not valid data. Such pixels should generally not
        be displayed, nor contribute to analysis operations.

        .. versionchanged:: 1.9

            This property can now be set as well.

    .. method:: datatype(as_string=False)

        The data type contained in the band, as an integer constant between 0
        (Unknown) and 11. If ``as_string`` is ``True``, the data type is
        returned as a string with the following possible values:
        ``GDT_Unknown``, ``GDT_Byte``, ``GDT_UInt16``, ``GDT_Int16``,
        ``GDT_UInt32``, ``GDT_Int32``, ``GDT_Float32``, ``GDT_Float64``,
        ``GDT_CInt16``, ``GDT_CInt32``, ``GDT_CFloat32``, and ``GDT_CFloat64``.

    .. method:: data(data=None, offset=None, size=None)

        .. versionadded:: 1.9

        The accessor to the pixel values of the ``GDALBand``. Returns the complete
        data array if no parameters are provided. A subset of the pixel array can
        be requested by specifying an offset and block size as tuples.

        If NumPy is available, the data is returned as NumPy array. For performance
        reasons, it is highly recommended to use NumPy.

        Data is written to the ``GDALBand`` if the ``data`` parameter is provided.
        The input can be of one of the following types - packed string, buffer, list,
        array, and NumPy array. The number of items in the input must correspond to the
        total number of pixels in the band, or to the number of pixels for a specific
        block of pixel values if the ``offset`` and ``size`` parameters are provided.

        For example:

            >>> rst = GDALRaster({'width': 4, 'height': 4, 'srid': 4326, 'datatype': 1, 'nr_of_bands': 1})
            >>> bnd = rst.bands[0]
            >>> bnd.data(range(16))
            >>> bnd.data()
            array([[ 0,  1,  2,  3],
                   [ 4,  5,  6,  7],
                   [ 8,  9, 10, 11],
                   [12, 13, 14, 15]], dtype=int8)
            >>> bnd.data(offset=(1, 1), size=(2, 2))
            array([[ 5,  6],
                   [ 9, 10]], dtype=int8)
            >>> bnd.data(data=[-1, -2, -3, -4], offset=(1, 1), size=(2, 2))
            >>> bnd.data()
            array([[ 0,  1,  2,  3],
                   [ 4, -1, -2,  7],
                   [ 8, -3, -4, 11],
                   [12, 13, 14, 15]], dtype=int8)
            >>> bnd.data(data='\x9d\xa8\xb3\xbe', offset=(1, 1), size=(2, 2))
            >>> bnd.data()
            array([[  0,   1,   2,   3],
                   [  4, -99, -88,   7],
                   [  8, -77, -66,  11],
                   [ 12,  13,  14,  15]], dtype=int8)

Settings
========

.. setting:: GDAL_LIBRARY_PATH

GDAL_LIBRARY_PATH
-----------------

A string specifying the location of the GDAL library.  Typically,
this setting is only used if the GDAL library is in a non-standard
location (e.g., ``/home/john/lib/libgdal.so``).