# encryption.py - module for handling encrypted values # coding: utf-8 # # Copyright (C) 2014-2016 Arthur de Jong # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA # 02110-1301 USA """Module that handles encrypted PSKC values. This module defines an Encryption class that handles the encryption key, algorithms and decryption. The encryption key can be derived using the KeyDerivation class. """ import base64 # cannonical URIs of known algorithms _algorithms = { 'tripledes-cbc': 'http://www.w3.org/2001/04/xmlenc#tripledes-cbc', 'kw-tripledes': 'http://www.w3.org/2001/04/xmlenc#kw-tripledes', 'aes128-cbc': 'http://www.w3.org/2001/04/xmlenc#aes128-cbc', 'aes192-cbc': 'http://www.w3.org/2001/04/xmlenc#aes192-cbc', 'aes256-cbc': 'http://www.w3.org/2001/04/xmlenc#aes256-cbc', 'kw-aes128': 'http://www.w3.org/2001/04/xmlenc#kw-aes128', 'kw-aes192': 'http://www.w3.org/2001/04/xmlenc#kw-aes192', 'kw-aes256': 'http://www.w3.org/2001/04/xmlenc#kw-aes256', 'camellia128': 'http://www.w3.org/2001/04/xmldsig-more#camellia128', 'camellia192': 'http://www.w3.org/2001/04/xmldsig-more#camellia192', 'camellia256': 'http://www.w3.org/2001/04/xmldsig-more#camellia256', 'kw-camellia128': 'http://www.w3.org/2001/04/xmldsig-more#kw-camellia128', 'kw-camellia192': 'http://www.w3.org/2001/04/xmldsig-more#kw-camellia192', 'kw-camellia256': 'http://www.w3.org/2001/04/xmldsig-more#kw-camellia256', 'hmac-md5': 'http://www.w3.org/2001/04/xmldsig-more#hmac-md5', 'hmac-sha1': 'http://www.w3.org/2000/09/xmldsig#hmac-sha1', 'hmac-sha224': 'http://www.w3.org/2001/04/xmldsig-more#hmac-sha224', 'hmac-sha256': 'http://www.w3.org/2001/04/xmldsig-more#hmac-sha256', 'hmac-sha384': 'http://www.w3.org/2001/04/xmldsig-more#hmac-sha384', 'hmac-sha512': 'http://www.w3.org/2001/04/xmldsig-more#hmac-sha512', 'hmac-ripemd160': 'http://www.w3.org/2001/04/xmldsig-more#hmac-ripemd160', 'pbkdf2': 'http://www.rsasecurity.com/rsalabs/pkcs/schemas/' + 'pkcs-5v2-0#pbkdf2', } # translation table to change old encryption names to new names _algorithm_aliases = { '3des-cbc': 'tripledes-cbc', '3des112-cbc': 'tripledes-cbc', '3des168-cbc': 'tripledes-cbc', 'kw-3des': 'kw-tripledes', 'pbe-3des112-cbc': 'tripledes-cbc', 'pbe-3des168-cbc': 'tripledes-cbc', 'pbe-aes128-cbc': 'aes128-cbc', 'pbe-aes192-cbc': 'aes192-cbc', 'pbe-aes256-cbc': 'aes256-cbc', 'rsa-1_5': 'rsa-1_5', 'rsa-oaep-mgf1p': 'rsa-oaep-mgf1p', } def normalise_algorithm(algorithm): """Return the canonical URI for the provided algorithm.""" if not algorithm or algorithm.lower() == 'none': return None algorithm = _algorithm_aliases.get(algorithm.lower(), algorithm) return _algorithms.get(algorithm.rsplit('#', 1)[-1].lower(), algorithm) def pad(value, block_size): """Pad the value to block_size length.""" padding = block_size - (len(value) % block_size) return value + padding * chr(padding).encode('ascii') def unpad(value): """Remove padding from the plaintext.""" return value[0:-ord(value[-1:])] class KeyDerivation(object): """Handle key derivation. The algorithm property contains the key derivation algorithm to use. For PBDKF2 the following parameters are set: pbkdf2_salt: salt value pbkdf2_iterations: number of iterations to use pbkdf2_key_length: required key length in bytes pbkdf2_prf: name of pseudorandom function used """ def __init__(self, key_derivation=None): self.algorithm = None # PBKDF2 properties self.pbkdf2_salt = None self.pbkdf2_iterations = None self.pbkdf2_key_length = None self.pbkdf2_prf = None self.parse(key_derivation) def parse(self, key_derivation): """Read derivation parameters from a element.""" from pskc.xml import find, findint, findbin if key_derivation is None: return self.algorithm = key_derivation.get('Algorithm') # PBKDF2 properties pbkdf2 = find(key_derivation, 'PBKDF2-params') if pbkdf2 is not None: # get used salt self.pbkdf2_salt = findbin(pbkdf2, 'Salt/Specified') # required number of iterations self.pbkdf2_iterations = findint(pbkdf2, 'IterationCount') # key length self.pbkdf2_key_length = findint(pbkdf2, 'KeyLength') # pseudorandom function used prf = find(pbkdf2, 'PRF') if prf is not None: self.pbkdf2_prf = prf.get('Algorithm') def make_xml(self, encryption_key, key_names): from pskc.xml import mk_elem derived_key = mk_elem(encryption_key, 'xenc11:DerivedKey', empty=True) key_derivation = mk_elem(derived_key, 'xenc11:KeyDerivationMethod', Algorithm=self.algorithm) if self.algorithm.endswith('#pbkdf2'): pbkdf2 = mk_elem(key_derivation, 'xenc11:PBKDF2-params', empty=True) if self.pbkdf2_salt: salt = mk_elem(pbkdf2, 'Salt', empty=True) mk_elem(salt, 'Specified', base64.b64encode(self.pbkdf2_salt)) mk_elem(pbkdf2, 'IterationCount', self.pbkdf2_iterations) mk_elem(pbkdf2, 'KeyLength', self.pbkdf2_key_length) mk_elem(pbkdf2, 'PRF', self.pbkdf2_prf) # TODO: serialise ReferenceList/DataReference for name in key_names: mk_elem(derived_key, 'xenc11:MasterKeyName', name) def derive_pbkdf2(self, password): from Crypto.Protocol.KDF import PBKDF2 from pskc.mac import get_hmac from pskc.exceptions import KeyDerivationError prf = None if self.pbkdf2_prf: prf = get_hmac(self.pbkdf2_prf) if prf is None: raise KeyDerivationError( 'Pseudorandom function unsupported: %r' % self.pbkdf2_prf) return PBKDF2( password, self.pbkdf2_salt, dkLen=self.pbkdf2_key_length, count=self.pbkdf2_iterations, prf=prf) def derive(self, password): """Derive a key from the password.""" from pskc.exceptions import KeyDerivationError if self.algorithm is None: raise KeyDerivationError('No algorithm specified') if self.algorithm.endswith('#pbkdf2'): return self.derive_pbkdf2(password) else: raise KeyDerivationError( 'Unsupported algorithm: %r' % self.algorithm) def setup_pbkdf2(self, password, salt=None, salt_length=16, key_length=None, iterations=None, prf=None): from Crypto import Random self.algorithm = normalise_algorithm('pbkdf2') if salt is None: salt = Random.get_random_bytes(salt_length) self.pbkdf2_salt = salt if iterations: self.pbkdf2_iterations = iterations elif self.pbkdf2_iterations is None: self.pbkdf2_iterations = 12 * 1000 if key_length: self.pbkdf2_key_length = key_length return self.derive_pbkdf2(password) class Encryption(object): """Class for handling encryption keys that are used in the PSKC file. Encryption generally uses a symmetric key that is used to encrypt some of the information stored in PSKC files (typically the seed). This class provides the following values: id: identifier of the key algorithm: the encryption algorithm used key_names: list of names for the key key_name: (first) name of the key (usually there is only one) key: the key value itself (binary form) fields: a list of Key fields that will be encrypted on writing The key can either be assigned to the key property or derived using the derive_key() method. """ def __init__(self, pskc): self.pskc = pskc self.id = None self.key_names = [] self.key = None self._algorithm = None self.derivation = KeyDerivation() self.fields = [] def parse(self, key_info): """Read encryption information from the XML tree.""" from pskc.xml import find, findall, findtext if key_info is None: return self.id = key_info.get('Id') for name in findall(key_info, 'KeyName'): self.key_names.append(findtext(name, '.')) for name in findall(key_info, 'DerivedKey/MasterKeyName'): self.key_names.append(findtext(name, '.')) self.derivation.parse(find( key_info, 'DerivedKey/KeyDerivationMethod')) def make_xml(self, container): from pskc.xml import mk_elem if all(x is None for x in (self.id, self.key_name, self.key, self.derivation.algorithm)): return encryption_key = mk_elem(container, 'pskc:EncryptionKey', Id=self.id, empty=True) if self.derivation.algorithm: self.derivation.make_xml(encryption_key, self.key_names) else: for name in self.key_names: mk_elem(encryption_key, 'ds:KeyName', name) @property def key_name(self): """Provide the name of the (first) key.""" if self.key_names: return self.key_names[0] @key_name.setter def key_name(self, value): self.key_names = [value] @property def algorithm(self): """Provide the encryption algorithm used.""" if self._algorithm: return self._algorithm @algorithm.setter def algorithm(self, value): self._algorithm = normalise_algorithm(value) def derive_key(self, password): """Derive a key from the password.""" self.key = self.derivation.derive(password) def _setup_encryption(self, kwargs): for k in ('id', 'algorithm', 'key_name', 'key_names', 'fields'): v = kwargs.pop(k, None) if v is not None: setattr(self, k, v) # default encryption to AES128-CBC if not self.algorithm: self.algorithm = 'aes128-cbc' # default to encrypting the secret only if not self.fields: self.fields = ['secret', ] # if we're using a CBC mode of encryption, add a MAC if self.algorithm.endswith('-cbc'): self.pskc.mac.setup() def setup_preshared_key(self, **kwargs): """Configure pre-shared key encryption. The following arguments may be supplied: key: the encryption key to use id: encryption key identifier algorithm: encryption algorithm key_length: encryption key length in bytes key_name: a name for the key key_names: a number of names for the key fields: a list of fields to encrypt None of the arguments are required, reasonable defaults will be chosen for missing arguments. """ self._setup_encryption(kwargs) key = kwargs.pop('key', self.key) if not key: from Crypto import Random self.key = Random.get_random_bytes(kwargs.pop( 'key_length', self.algorithm_key_lengths[-1])) def setup_pbkdf2(self, password, **kwargs): """Configure password-based PSKC encryption. The following arguments may be supplied: password: the password to use (required) id: encryption key identifier algorithm: encryption algorithm key_length: encryption key length in bytes key_name: a name for the key key_names: a number of names for the key fields: a list of fields to encrypt salt: PBKDF2 salt salt_length: used when generating random salt iterations: number of PBKDF2 iterations prf: PBKDF2 pseudorandom function Only password is required, for the other arguments reasonable defaults will be chosen. """ self._setup_encryption(kwargs) # pass a key length to PBKDF2 kwargs.setdefault('key_length', self.algorithm_key_lengths[-1]) self.key = self.derivation.setup_pbkdf2(password, **kwargs) @property def algorithm_key_lengths(self): """Provide the possible key lengths for the configured algorithm.""" from pskc.exceptions import DecryptionError algorithm = self.algorithm if algorithm is None: raise DecryptionError('No algorithm specified') elif algorithm.endswith('#aes128-cbc') or \ algorithm.endswith('#aes192-cbc') or \ algorithm.endswith('#aes256-cbc'): return [int(algorithm[-7:-4]) // 8] elif algorithm.endswith('#tripledes-cbc') or \ algorithm.endswith('#kw-tripledes'): from Crypto.Cipher import DES3 return list(DES3.key_size) elif algorithm.endswith('#kw-aes128') or \ algorithm.endswith('#kw-aes192') or \ algorithm.endswith('#kw-aes256'): return [int(algorithm[-3:]) // 8] else: raise DecryptionError('Unsupported algorithm: %r' % algorithm) def decrypt_value(self, cipher_value, algorithm=None): """Decrypt the cipher_value and return the plaintext value.""" from pskc.exceptions import DecryptionError key = self.key if key is None: raise DecryptionError('No key available') algorithm = algorithm or self.algorithm if algorithm is None: raise DecryptionError('No algorithm specified') if len(key) not in self.algorithm_key_lengths: raise DecryptionError('Invalid key length') if algorithm.endswith('#aes128-cbc') or \ algorithm.endswith('#aes192-cbc') or \ algorithm.endswith('#aes256-cbc'): from Crypto.Cipher import AES iv = cipher_value[:AES.block_size] ciphertext = cipher_value[AES.block_size:] cipher = AES.new(key, AES.MODE_CBC, iv) return unpad(cipher.decrypt(ciphertext)) elif algorithm.endswith('#tripledes-cbc'): from Crypto.Cipher import DES3 iv = cipher_value[:DES3.block_size] ciphertext = cipher_value[DES3.block_size:] cipher = DES3.new(key, DES3.MODE_CBC, iv) return unpad(cipher.decrypt(ciphertext)) elif algorithm.endswith('#kw-aes128') or \ algorithm.endswith('#kw-aes192') or \ algorithm.endswith('#kw-aes256'): from pskc.crypto.aeskw import unwrap return unwrap(cipher_value, key) elif algorithm.endswith('#kw-tripledes'): from pskc.crypto.tripledeskw import unwrap return unwrap(cipher_value, key) def encrypt_value(self, plaintext): """Encrypt the provided value and return the cipher_value.""" from pskc.exceptions import EncryptionError key = self.key if key is None: raise EncryptionError('No key available') algorithm = self.algorithm if algorithm is None: raise EncryptionError('No algorithm specified') if len(key) not in self.algorithm_key_lengths: raise EncryptionError('Invalid key length') if algorithm.endswith('#aes128-cbc') or \ algorithm.endswith('#aes192-cbc') or \ algorithm.endswith('#aes256-cbc'): from Crypto import Random from Crypto.Cipher import AES iv = Random.get_random_bytes(AES.block_size) cipher = AES.new(key, AES.MODE_CBC, iv) return iv + cipher.encrypt(pad(plaintext, AES.block_size)) elif algorithm.endswith('#tripledes-cbc'): from Crypto import Random from Crypto.Cipher import DES3 iv = Random.get_random_bytes(DES3.block_size) cipher = DES3.new(key, DES3.MODE_CBC, iv) return iv + cipher.encrypt(pad(plaintext, DES3.block_size)) elif algorithm.endswith('#kw-aes128') or \ algorithm.endswith('#kw-aes192') or \ algorithm.endswith('#kw-aes256'): from pskc.crypto.aeskw import wrap return wrap(plaintext, key) elif algorithm.endswith('#kw-tripledes'): from pskc.crypto.tripledeskw import wrap return wrap(plaintext, key)